APPROXIMATE AGGREGATION OF NON-AUTONOMOUS TWO TIME SCALES SPATIALLY DISTRIBUTED SYSTEMS.

M.Marvá*, J.C. Poggiale ${ }^{\dagger}$ and R. Bravo de la Parra*

Dpto. Matemáticas, Universidad de Alcalá, Spain*
Centre d'Oceanologie de Marseille, Université de la Méditerranée, France ${ }^{\dagger}$

CMPD3. BURDEAUX - June 2010

■ Models with coupling fast and slow processes.

- Reduction of the dimension.

■ Non autonomous systems.
■ Different ways of introducing time dependence.

■ Models with coupling fast and slow processes.
■ Reduction of the dimension.

- Non autonomous systems.
- Different ways of introducing time dependence.

■ Models with coupling fast and slow processes.
■ Reduction of the dimension.
■ Non autonomous systems.

- Different ways of introducing time dependence.

■ Models with coupling fast and slow processes.

- Reduction of the dimension.

■ Non autonomous systems.

- Different ways of introducing time dependence.

Migrations

$$
\left\{\begin{array}{l}
\frac{d p_{1}}{d \tau}=-m_{1} p_{1}+m_{2} p_{2} \\
\frac{d p_{2}}{d \tau}=m_{1} p_{1}-m_{2} p_{2}
\end{array}\right.
$$

Local dynamics

$$
\left\{\begin{array}{l}
\frac{d p_{1}}{d \tau}=f_{1}\left(p_{1}\right) \\
\frac{d p_{2}}{d \tau}=f_{2}\left(p_{2}\right)
\end{array}\right.
$$

Two time scales model:

$$
\left\{\begin{array}{l}
\frac{d p_{1}}{d \tau}=-m_{1} p_{1}+m_{2} p_{2}+\epsilon f_{1}\left(p_{1}\right) \tag{1}\\
\frac{d p_{2}}{d \tau}=m_{1} p_{1}-m_{2} p_{2}+\epsilon f_{2}\left(p_{2}\right)
\end{array}\right.
$$

- Slow terms are in front of ϵ.
- Time dependence on $t=\epsilon \tau$

Two time scales model:

$$
\left\{\begin{array}{l}
\frac{d p_{1}}{d \tau}=-m_{1} p_{1}+m_{2} p_{2}+\epsilon f_{1}\left(p_{1}\right) \tag{1}\\
\frac{d p_{2}}{d \tau}=m_{1} p_{1}-m_{2} p_{2}+\epsilon f_{2}\left(p_{2}\right)
\end{array}\right.
$$

■ Slow terms are in front of ϵ.
■ Time dependence on $t=\epsilon \tau$

$$
\left\{\begin{array}{l}
\frac{d p_{1}}{d \tau}=-m_{1}(\epsilon \tau) p_{1}+m_{2}(\epsilon \tau) p_{2}+\epsilon f_{1}\left((\epsilon \tau), p_{1}\right) \tag{2}\\
\frac{d p_{2}}{d \tau}=m_{1}(\epsilon \tau) p_{1}-m_{2}(\epsilon \tau) p_{2}+\epsilon f_{2}\left((\epsilon \tau), p_{2}\right)
\end{array}\right.
$$

■ Slow variable z varies slowly: $d z / d \tau=\mathcal{O}(\epsilon)$

■ Defining $p=p_{1}+p_{2}$ and frequencies $\nu_{i}=p_{i} / p$ yields

$$
\left\{\begin{array}{l}
\frac{d \nu_{1}}{d \tau}=m_{2}(\epsilon \tau)-\left(m_{1}(\epsilon \tau)+m_{2}(\epsilon \tau)\right) \nu_{1}+\epsilon \frac{f_{1}\left((\epsilon \tau), \nu_{1} p\right)}{p} \tag{3}\\
\frac{d p}{d \tau}=\epsilon\left(f_{1}\left((\epsilon \tau), \nu_{1} p\right)+f_{2}\left((\epsilon \tau),\left(1-\nu_{1}\right) p\right)\right)
\end{array}\right.
$$

Change variables $\boldsymbol{s}=(\epsilon \tau-\alpha) / \epsilon$ and let $\epsilon \rightarrow 0$ in (3):

$$
\left\{\begin{array}{l}
\frac{d \nu_{1}}{d s}=m_{2}(\alpha)-\left(m_{1}(\alpha)+m_{2}(\alpha)\right) \nu_{1} \\
\frac{d p}{d s}=0
\end{array}\right.
$$

For each α

$$
\nu_{1}^{*}(\alpha)=\frac{m_{2}(\alpha)}{m_{1}(\alpha)+m_{2}(\alpha)}
$$

is an A.S. equilibrium, uniformly in α.

Let $t=\epsilon \tau$ and consider $\nu_{1}^{*}(t)=\frac{m_{2}(t)}{m_{1}(t)+m_{2}(t)}$

Theorem

If an uniformly $A S$ solution $p^{*}(t)$ exits for equation

$$
\frac{d p}{d t}=f_{1}\left(t, \nu_{1}^{*} p\right)+f_{2}\left(t,\left(1-\nu_{1}^{*}\right) p\right)
$$

then, for each solution $\left(p_{1}^{\epsilon}(t), p_{2}^{\epsilon}(t)\right)$ of system (2),

$$
\lim _{\epsilon \rightarrow 0}\left(p_{1}^{\epsilon}(t), p_{2}^{\epsilon}(t)\right)=\left(\nu_{1}^{*}(t) p^{*}(t),\left(1-\nu_{1}^{*}(t)\right) p^{*}(t)\right)
$$

uniformly in closed subintervals of $\left[t_{0}, \infty\right)$
where $m_{i}, f_{i} \in \mathcal{C}^{2}$ are periodic functions of time, $i=1,2$.

When

$$
\left\{\begin{array}{l}
\frac{d p_{1}}{d \tau}=-m_{1}(\tau) p_{1}+m_{2}(\tau) p_{2}+\epsilon f_{1}\left((\epsilon \tau), p_{1}\right) \\
\frac{d p_{2}}{d \tau}=m_{1}(\tau) p_{1}-m_{2}(\tau) p_{2}+\epsilon f_{2}\left((\epsilon \tau), p_{2}\right)
\end{array}\right.
$$

when changing variable $s=(\epsilon \tau-\alpha) / \epsilon$ and letting $\epsilon \rightarrow 0$, it must exists $\bar{m}_{i}:=\lim _{\epsilon \rightarrow 0} m_{i}(s+\alpha / \epsilon)$

When

$$
\left\{\begin{array}{l}
\frac{d p_{1}}{d \tau}=-m_{1}(\tau) p_{1}+m_{2}(\tau) p_{2}+\epsilon f_{1}\left((\epsilon \tau), p_{1}\right) \\
\frac{d p_{2}}{d \tau}=m_{1}(\tau) p_{1}-m_{2}(\tau) p_{2}+\epsilon f_{2}\left((\epsilon \tau), p_{2}\right)
\end{array}\right.
$$

when changing variable $s=(\epsilon \tau-\alpha) / \epsilon$ and letting $\epsilon \rightarrow 0$, it must exists $\bar{m}_{i}:=\lim _{\epsilon \rightarrow 0} m_{i}(s+\alpha / \epsilon)$

When

$$
\left\{\begin{array}{l}
\frac{d p_{1}}{d \tau}=-m_{1}(\tau) p_{1}+m_{2}(\tau) p_{2}+\epsilon f_{1}\left((\epsilon \tau), p_{1}\right) \\
\frac{d p_{2}}{d \tau}=m_{1}(\tau) p_{1}-m_{2}(\tau) p_{2}+\epsilon f_{2}\left((\epsilon \tau), p_{2}\right)
\end{array}\right.
$$

when changing variable $s=(\epsilon \tau-\alpha) / \epsilon$ and letting $\epsilon \rightarrow 0$, it must exists $\bar{m}_{i}:=\lim _{\epsilon \rightarrow 0} m_{i}(s+\alpha / \epsilon)$

$$
\left\{\begin{array}{l}
\frac{d \nu_{1}}{d s}=\bar{m}_{2}-\left(\bar{m}_{1}+\bar{m}_{2}\right) \nu_{1} \tag{4}\\
\frac{d p}{d s}=0
\end{array}\right.
$$

has an A.S. equilibrium $\nu_{1}^{*}=\frac{\bar{m}_{2}}{\bar{m}_{1}+\bar{m}_{2}}$.

General settings

Consider a population divided in A groups inhabiting q patches:

$$
\mathbf{n}=\left(\mathbf{n}_{1}, \cdots, \mathbf{n}_{A}\right)=\left(n_{11}, \cdots, n_{1 q}, \cdots, n_{A 1}, \cdots, n_{A q}\right) \in \mathbb{R}^{q A}
$$

Our model couples fast migrations between patches with slow local interactions:

$$
\left\{\begin{array}{c}
\frac{d \mathbf{n}_{1}}{d \tau}=\mathbf{f}_{1}\left(\star, \mathbf{n}_{1}\right)+\epsilon \mathbf{S}_{1}(\epsilon \tau, \mathbf{n}) \tag{5}\\
\cdots \\
\frac{d \mathbf{n}_{A}}{d \tau}=\mathbf{f}_{A}\left(\star, \mathbf{n}_{A}\right)+\epsilon \mathbf{S}_{A}(\epsilon \tau, \mathbf{n})
\end{array} \text { time } \star \in\{\tau, \epsilon \tau\}\right.
$$

where

- $\mathbf{f}_{i}, \mathbf{s}_{i} \in \mathcal{C}^{2}$.
- \mathbf{f}_{i} migrations of group i.

■ \mathbf{s}_{i} interactions of group i with other(s) groups.

Slow-fast form

We consider:
■ the global (slow) variables

$$
y_{i}:=\sum_{k=1}^{q} n_{i k} \quad i=1, \cdots, A
$$

- the frequencies

$$
x_{i j}=\frac{n_{i j}}{y_{i}} \quad i=1, \cdots, A, j=1, \cdots, q
$$

Rearranging variables $\mathbf{n} \in \mathbb{R}^{q A} \leftrightarrow(\mathbf{x}, \mathbf{y}) \in \mathbb{R}^{(q-1) A} \times \mathbb{R}^{A}$

$$
\begin{cases}\frac{d \mathbf{x}}{d \tau}=\mathbf{F}(\star, \mathbf{x}, \mathbf{y})+\epsilon \mathbf{S}(\star, \mathbf{x}, \mathbf{y}), & \tag{6}\\ \mathbf{x} \in \mathbb{R}^{(q-1) A} \\ \frac{d \mathbf{y}}{d \tau}=\epsilon \mathbf{G}_{j}(\star, \mathbf{x}, \mathbf{y}), & \mathbf{y} \in \mathbb{R}^{A}\end{cases}
$$

If migrations are non autonomous and linear:
$\mathbf{f}_{j}\left(\star, \mathbf{n}_{j}\right)=\left(\begin{array}{cccc}-m_{1 j}(\star) & \alpha_{12}^{j} m_{2 j}(\star) & \cdots & \alpha_{1 q}^{j} m_{q j}(\star) \\ \alpha_{21}^{j} m_{1 j}(\star) & -m_{2 j}(\star) & \cdots & \alpha_{2 q}^{j} m_{q j}(\star) \\ \cdots & \cdots & \cdots & \cdots \\ \alpha_{q 1}^{j} m_{1 j}(\star) & \alpha_{q 2}^{j} m_{2 j}(\star) & \cdots & -m_{q j}(\star)\end{array}\right)\left(\begin{array}{c}n_{1 j} \\ n_{2 j} \\ \cdots \\ n_{q j}\end{array}\right)$
where $\star \in\{\tau, \epsilon \tau\}, 0 \leq \alpha_{m k}^{j} \leq 1, \sum_{k \neq m, k=1}^{q} \alpha_{m k}^{j}=1$, $m=1,2, \cdots, q$, then

Theorem. Under the previous hypotheses, system (6) becomes

$$
\begin{cases}\mathbf{x}_{t}^{\prime}=\mathbf{F}(t, \mathbf{x})+\epsilon \mathbf{S}(t, \mathbf{x}, \mathbf{y}), & \mathbf{x} \in \mathbb{R}^{(q-1) A} \\ \mathbf{y}_{t}^{\prime}=\mathbf{G}(t, \mathbf{x}, \mathbf{y}), & \mathbf{y} \in \mathbb{R}^{A}\end{cases}
$$

where $\mathbf{F}, \mathbf{G}, \mathbf{S} \in \mathcal{C}^{2}$ are ω-periodic on t. Assume that system

$$
\mathbf{y}=\mathbf{G}\left(t, \mathbf{x}^{*}(t), \mathbf{y}\right)
$$

has an uniformly A.S. solution $\mathbf{y}^{*}(t)$.

Theorem. Under the previous hypotheses, system (6) becomes

$$
\begin{cases}\mathbf{x}_{t}^{\prime}=\mathbf{F}(t, \mathbf{x})+\epsilon \mathbf{S}(t, \mathbf{x}, \mathbf{y}), & \mathbf{x} \in \mathbb{R}^{(q-1) A} \\ \mathbf{y}_{t}^{\prime}=\mathbf{G}(t, \mathbf{x}, \mathbf{y}), & \mathbf{y} \in \mathbb{R}^{A}\end{cases}
$$

where $\mathbf{F}, \mathbf{G}, \mathbf{S} \in \mathcal{C}^{2}$ are ω-periodic on t. Assume that system

$$
\mathbf{y}=\mathbf{G}\left(t, \mathbf{x}^{*}(t), \mathbf{y}\right)
$$

has an uniformly A.S. solution $\mathbf{y}^{*}(t)$. Then, for each $\epsilon>0$ small enough, the corresponding solution $\left(\mathbf{n}_{1}^{\epsilon}(t), \cdots, \mathbf{n}_{A}^{\epsilon}(t)\right)$ of the original system (5) verifies

$$
\begin{gathered}
\lim _{\epsilon \rightarrow 0}\left(\mathbf{n}_{1}^{\epsilon}(t), \ldots, \mathbf{n}_{A}^{\epsilon}(t)\right)= \\
\left(\mathbf{x}_{1}^{*} y_{1}^{*},\left(1-\sum_{k=1}^{q-1} x_{1 k}^{*}\right) y_{1}^{*}, \ldots, \mathbf{x}_{A}^{*} y_{A}^{*},\left(1-\sum_{k=1}^{q-1} x_{A k}^{*}\right) y_{A}^{*}\right)
\end{gathered}
$$

uniformly on closed subset of $\left[t_{0}, \infty\right)$.

Theorem. Consider the system

$$
\begin{cases}\mathbf{x}_{t}^{\prime}=\mathbf{F}(\tau, \mathbf{x})+\epsilon \mathbf{S}(t, \mathbf{x}, \mathbf{y}), & \mathbf{x} \in \mathbb{R}^{(q-1) A} \\ \mathbf{y}_{t}^{\prime}=\mathbf{G}(t, \mathbf{x}, \mathbf{y}), & \mathbf{y} \in \mathbb{R}^{A}\end{cases}
$$

where \mathbf{S}, \mathbf{G} are ω-periodic on t and $\lim _{\xi \rightarrow \infty} \mathbf{F}(\xi, \mathbf{x})=\overline{\mathbf{F}}(\mathbf{x})$. Assume that system

$$
\mathbf{y}=\mathbf{G}\left(t, \mathbf{x}^{*}, \mathbf{y}\right)
$$

has an A.S. solution $\mathbf{y}^{*}(t)$. Then, for each $\epsilon>0$ small enough, the corresponding solution $\left(\mathbf{x}_{\epsilon}(t), \mathbf{y}_{\epsilon}(t)\right)$ of the original system (6) verifies

$$
\lim _{\epsilon \rightarrow 0}\left(\mathbf{n}_{1}^{\epsilon}(t), \ldots, \mathbf{n}_{A}^{\epsilon}(t)\right)=
$$

$$
\left(\mathbf{x}_{1}^{*} y_{1}^{*},\left(1-\sum_{k=1}^{q-1} x_{1 k}^{*}\right) y_{1}^{*}, \ldots, \mathbf{x}_{A}^{*} y_{A}^{*},\left(1-\sum_{k=1}^{q-1} x_{A k}^{*}\right) y_{A}^{*}\right)
$$

uniformly on closed subset of $\left[t_{0}, \infty\right)$.

For more general migration functions (for instance, a matrix with periodic and denso-dependent coefficients,...)

$$
\begin{cases}\frac{d \mathbf{x}}{d s}=\mathbf{F}(\alpha, \mathbf{x}, \mathbf{y}) & \mathbf{x} \in \mathbb{R}^{(q-1) A} \\ \frac{d \mathbf{y}}{d s}=0 & \mathbf{y} \in \mathbb{R}^{A} .\end{cases}
$$

it is needed that system

$$
\mathbf{x}_{s}^{\prime}=\mathbf{F}(\alpha, \mathbf{x}, \beta), \quad(\alpha, \mathbf{x}, \beta) \in \mathbb{R} \times \mathbb{R}^{(q-1) A} \times \mathbb{R}^{q}
$$

possess finitely many equilibrium $\mathbf{x}^{*}(\alpha, \beta)$ isolated and A.S. uniformly in (α, β).

$$
\left\{\begin{array}{l}
\frac{d n_{1}}{d \tau}=-m_{1}(t) n_{1}+m_{2}(t) n_{2} \\
\frac{d n_{2}}{d \tau}=m_{1}(t) n_{1}-m_{2}(t) n_{2}
\end{array}\right.
$$

Coefficients are positive periodic functions of time $t=\epsilon \tau$.

$$
\left\{\begin{array}{l}
\frac{d n_{1}}{d \tau}=-m_{1}(t) n_{1}+m_{2}(t) n_{2}+\epsilon\left[\lambda_{1}(t) n_{1}\left(1-\frac{n_{1}}{k_{1}(t)}\right)\right] \\
\frac{d n_{2}}{d \tau}=m_{1}(t) n_{1}-m_{2}(t) n_{2}
\end{array}\right.
$$

Coefficients are positive periodic functions of time $t=\epsilon \tau$.

$$
\left\{\begin{array}{l}
\frac{d n_{1}}{d \tau}=-m_{1}(t) n_{1}+m_{2}(t) n_{2}+\epsilon\left[\lambda_{1}(t) n_{1}\left(1-\frac{n_{1}}{k_{1}(t)}\right)\right] \\
\frac{d n_{2}}{d \tau}=m_{1}(t) n_{1}-m_{2}(t) n_{2}+\epsilon\left[\lambda_{2}(t) n_{2}\left(1-\frac{n_{2}}{k_{2}(t)}\right)-\frac{\beta_{2}(t) n_{2} p}{1+p}\right] \\
\frac{d p}{d \tau}=\epsilon\left[-\lambda_{3}(t) p+\frac{\beta_{3}(t) n_{2} p}{1+p}\right]
\end{array}\right.
$$

Coefficients are positive periodic functions of time $t=\epsilon \tau$.

$$
\left\{\begin{array}{l}
\frac{d n_{1}}{d \tau}=-m_{1}(t) n_{1}+m_{2}(t) n_{2}+\epsilon\left[\lambda_{1}(t) n_{1}\left(1-\frac{n_{1}}{k_{1}(t)}\right)\right] \\
\frac{d n_{2}}{d \tau}=m_{1}(t) n_{1}-m_{2}(t) n_{2}+\epsilon\left[\lambda_{2}(t) n_{2}\left(1-\frac{n_{2}}{k_{2}(t)}\right)-\frac{\beta_{2}(t) n_{2} p}{1+p}\right] \\
\frac{d p}{d \tau}=\epsilon\left[-\lambda_{3}(t) p+\frac{\beta_{3}(t) n_{2} p}{1+p}\right]
\end{array}\right.
$$

Coefficients are positive periodic functions of time $t=\epsilon \tau$.

$$
\left\{\begin{array}{l}
\frac{d n_{1}}{d \tau}=-m_{1}(t) n_{1}+m_{2}(t) n_{2}+\epsilon\left[\lambda_{1}(t) n_{1}\left(1-\frac{n_{1}}{k_{1}(t)}\right)\right] \\
\frac{d n_{2}}{d \tau}=m_{1}(t) n_{1}-m_{2}(t) n_{2}+\epsilon\left[\lambda_{2}(t) n_{2}\left(1-\frac{n_{2}}{k_{2}(t)}\right)-\frac{\beta_{2}(t) n_{2} p}{1+p}\right] \\
\frac{d p}{d \tau}=\epsilon\left[-\lambda_{3}(t) p+\frac{\beta_{3}(t) n_{2} p}{1+p}\right]
\end{array}\right.
$$

Coefficients are positive periodic functions of time.

Consider:
■ global variables: $n=n_{1}+n_{2}, p$.
\square frequencies: $\nu_{i}=\frac{n_{i}}{n}, 1=\nu_{1}(t)+\nu_{2}(t), \nu_{1}^{*}(t)=\frac{\nu_{1}(t)}{\nu_{1}(t)+\nu_{2}(t)}$.

Proceeding as before and rearranging terms we get the aggregated system

$$
\left\{\begin{array}{l}
n_{t}^{\prime}=\left(a(t)-b(t) n-\frac{c(t) p}{1+p}\right) n \tag{7}\\
p_{t}^{\prime}=\left(-\lambda(t)+\frac{f(t) n}{1+p}\right) p
\end{array}\right.
$$

with ω-periodic positive coefficients.

$$
c(t)=\beta_{2}(t)\left(1-\nu_{1}^{*}\right) \quad \lambda(t)=\lambda_{3}(t)
$$

Proceeding as before and rearranging terms we get the aggregated system

$$
\left\{\begin{array}{l}
n_{t}^{\prime}=\left(a(t)-b(t) n-\frac{c(t) p}{1+p}\right) n \tag{7}\\
p_{t}^{\prime}=\left(-\lambda(t)+\frac{f(t) n}{1+p}\right) p
\end{array}\right.
$$

with ω-periodic positive coefficients. Where

$$
\begin{gathered}
a(t)=\lambda_{1}(t) \nu_{1}^{*}(t)+\lambda_{2}(t)\left(1-\nu_{1}^{*}\right) \quad b(t)=\frac{\lambda_{1}(t)\left(\nu_{1}^{*}\right)^{2}}{k_{1}(t)}+\frac{\lambda_{2}(t)\left(1-\nu_{1}^{*}\right)^{2}}{k_{2}(t)} \\
c(t)=\beta_{2}(t)\left(1-\nu_{1}^{*}\right) \quad \lambda(t)=\lambda_{3}(t) \quad f(t)=\beta_{3}(t) \nu_{1}^{*}
\end{gathered}
$$

The aggregated system (7) posses
■ The trivial solution: $(n(t), p(t))=(0,0)$

- Solving

yield the semi-trivial solutions:
■ $(n(t), p(t))=\left(0, p^{*}(t)\right)$.
- $(n(t), p(t))=\left(n^{*}(t), 0\right)$ where $n^{*}(t)$ is the periodic globally asymptotically stable solution of the periodic logistic equation with positive coefficients.
- Positive solutions.

The aggregated system (7) posses
\square The trivial solution: $(n(t), p(t))=(0,0)$
■ Solving

$$
p_{t}^{\prime}=-\lambda_{3}(t) p \quad \text { and } \quad n_{t}^{\prime}=(a(t)-b(t) n) n
$$

yield the semi-trivial solutions:
■ $(n(t), p(t))=\left(0, p^{*}(t)\right)$.
■ $(n(t), p(t))=\left(n^{*}(t), 0\right)$ where $n^{*}(t)$ is the periodic globally asymptotically stable solution of the periodic logistic equation with positive coefficients.

- Positive solutions.

The aggregated system (7) posses
\square The trivial solution: $(n(t), p(t))=(0,0)$
■ Solving

$$
p_{t}^{\prime}=-\lambda_{3}(t) p \quad \text { and } \quad n_{t}^{\prime}=(a(t)-b(t) n) n
$$

yield the semi-trivial solutions:
■ $(n(t), p(t))=\left(0, p^{*}(t)\right)$.
■ $(n(t), p(t))=\left(n^{*}(t), 0\right)$ where $n^{*}(t)$ is the periodic globally asymptotically stable solution of the periodic logistic equation with positive coefficients.

- Positive solutions.

Existence of periodic positive solutions

Using the maximum and minimum of the coefficients we get

$$
\left\{\begin{array}{l}
\left(a_{L}-b_{M} n-c_{M} \frac{p}{1+p}\right) n \leq n_{t}^{\prime} \leq\left(a_{M}-b_{L} n-c_{L} \frac{p}{1+p}\right) n \\
\left(-\lambda_{M}+f_{L} \frac{n}{1+p}\right) p \leq p_{t}^{\prime} \leq\left(-\lambda_{L}+f_{M} \frac{n}{1+p}\right) p \tag{8}
\end{array}\right.
$$

Proposition

Every solution of the aggregated system (7) is uniformly bounded, i.e.

$$
\lim _{t \rightarrow \infty}(n(t), p(t)) \in\left[0, \frac{a_{M}}{b_{L}}\right] \times\left[0, \frac{f_{M} a_{M}}{\lambda_{L} b_{L}}-1\right]
$$

Existence of periodic positive solutions

Invariant region $R .0<\frac{\lambda_{M}}{f_{L}}<\frac{a_{L}-c_{M}}{b_{M}}$.

Invariant region $R .0<\frac{\lambda_{M}}{f_{L}}<\frac{a_{L}-c_{M}}{b_{M}}$.
\square We consider the ω-operator

$$
\begin{aligned}
\varphi_{\omega}: R & \rightarrow R \\
(r, s) & \mapsto \varphi_{\omega}(r, s)=\varphi(\omega ; 0, r, s)
\end{aligned}
$$

■ Brouwer's fixed point theorem: $\varphi(\omega, 0, r, s)=\varphi(0,0, r, s)$ and $\varphi(t, 0, r, s)$ is positive, periodic and globally defined.

Linearizing around the positive periodic solution $\varphi=\left(n_{0}, p_{0}\right)$

Proposition

Every positive periodic solution of the aggregated system is uniformly asymptotically stable

Using the topological degree

Proposition

If the positive invariant region R is bounded away from the axes, then it contains one and only one positive periodic solution of the aggregated system.

Proposition

If $0<\frac{\lambda_{M}}{f_{L}}<\frac{a_{L}-c_{M}}{b_{M}}$ holds then, there exists a positive periodic solution $\left(n_{0}^{*}(t), p_{0}^{*}(t)\right)$ of the aggregated system such that each solutions $\left(n_{1}^{\epsilon}(t), n_{2}^{\epsilon}(t), p^{\epsilon}(t)\right)$ of the complete system, for $\epsilon \sim 0$,

$$
\lim _{\epsilon \rightarrow 0}\left(n_{1}^{\epsilon}(t), n_{2}^{\epsilon}(t), p^{\epsilon}(t)\right)=\left(\nu_{1}^{*}(t) n_{0}^{*}(t),\left(1-\nu_{1}^{*}(t)\right) n_{0}^{*}(t), p_{0}^{*}(t)\right)
$$

uniformly on closed subset of $\left[t_{0}, \infty\right)$.
In this case, the semi-trivial solution is unstable.

Remark
The existence of $\left(n_{0}^{*}(t), p_{0}^{*}(t)\right)$ depends on $\nu_{1}^{*}(t)$ as
$a(t), b(t), c(t), f(t)$ depend on $\nu_{1}^{*}(t)$

Proposition

If $0<\frac{\lambda_{M}}{f_{L}}<\frac{a_{L}-c_{M}}{b_{M}}$ holds then, there exists a positive periodic solution $\left(n_{0}^{*}(t), p_{0}^{*}(t)\right)$ of the aggregated system such that each solutions $\left(n_{1}^{\epsilon}(t), n_{2}^{\epsilon}(t), p^{\epsilon}(t)\right)$ of the complete system, for $\epsilon \sim 0$,

$$
\lim _{\epsilon \rightarrow 0}\left(n_{1}^{\epsilon}(t), n_{2}^{\epsilon}(t), p^{\epsilon}(t)\right)=\left(\nu_{1}^{*}(t) n_{0}^{*}(t),\left(1-\nu_{1}^{*}(t)\right) n_{0}^{*}(t), p_{0}^{*}(t)\right)
$$

uniformly on closed subset of $\left[t_{0}, \infty\right)$.
In this case, the semi-trivial solution is unstable.

Remark

The existence of $\left(n_{0}^{*}(t), p_{0}^{*}(t)\right)$ depends on $\nu_{1}^{*}(t)$ as $a(t), b(t), c(t), f(t)$ depend on $\nu_{1}^{*}(t)$

Proposition

The semi-trivial solution is uniformly asymptotically stable if

$$
\int_{t}^{t+T}\left(-\lambda(s)+f(s) n^{*}(s)\right) d s<0
$$

In this case, for each solution $\left(n_{1}^{\epsilon}(t), n_{2}^{\epsilon}(t), p^{\epsilon}(t)\right)$ of the complete system, for $\epsilon \sim 0$,

$$
\lim _{\epsilon \rightarrow 0}\left(n_{1}^{\epsilon}(t), n_{2}^{\epsilon}(t), p^{\epsilon}(t)\right)=\left(\nu_{1}(t) n^{*}(t),\left(1-\nu_{1}\right)(t) n^{*}(t), 0\right)
$$

uniformly on closed subset of $\left[t_{0}, \infty\right)$.

Remark

The stability of $\left(n^{*}(t), 0\right)$ depends on $\nu_{1}^{*}(t)$ as $f(t)$ depends on $\nu_{1}^{*}(t)$.

We can recover the behavior of the solutions of the complete model by means of uniformly asymptotically stable solutions of the aggregated system.

> Fast migrations can be replaced by processes reaching an stable behavior (in a suitable way).

We can recover the behavior of the solutions of the complete model by means of uniformly asymptotically stable solutions of the aggregated system.

Fast migrations can be replaced by processes reaching an stable behavior (in a suitable way).

R Auger, P; Bravo de la Parra, R; Poggiale, J.C; Sánchez, E; Sanz, L. (2008). Aggregation methods in dynamical systems and applications in population and community dynamics. Physics of Life Reviews. 5. pp 79-105.

嗇 Farkas, M. (1994). Periodic Motions. Springer-Verlag
(Hoppensteadt, F. (1966) Singular perturbations on the infinite interval. Transactions of the American Mathematical Society, Vol. 123, No. 2 , pp. 521-535
围 Skalski, G.T; Gilliam; J.F. (2001) Functional Responses with predator interference: viable alternatives to the Holling Type II Model. Ecology, no 82, 11, 3083-3092.

Linearizing around the positive periodic solution $\left(n_{0}, p_{0}\right)$ yields

$$
\begin{equation*}
X^{\prime}=A(t) X \tag{9}
\end{equation*}
$$

where

$$
A(t)=\left(\begin{array}{cc}
a(t)-2 b(t) n_{0}(t)-c(t) \frac{p_{0}(t)}{1+p_{0}(t)} & -c(t) \frac{n_{0}(t)}{\left(1+p_{0}(t)\right)^{2}} \tag{10}\\
f(t) \frac{p_{0}(t)}{1+p_{0}(t)} & -\lambda(t)+f(t) \frac{n_{0}(t)}{\left(1+p_{0}(t)\right)^{2}}
\end{array}\right)
$$

changing variables $y_{1}=x_{1} / n_{0}, y_{2}=x_{2} / p_{0}$ leads to

$$
\begin{equation*}
Y^{\prime}=B(t) Y \tag{11}
\end{equation*}
$$

where

$$
B(t)=\left(\begin{array}{cc}
-b(t) n_{0}(t) & -c(t) \frac{p_{0}(t)}{\left(1+p_{0}(t)\right)^{2}} \tag{12}\\
f(t) \frac{n_{0}(t)}{1+p_{0}(t)} & -f(t) \frac{p_{0}(t) n_{0}(t)}{\left(1+p_{0}(t)\right)^{2}}
\end{array}\right)
$$

which is equivalent to (10).

Consider matrix

$$
\left(\begin{array}{cc}
-b_{11} & -b_{12} \tag{13}\\
b_{21} & -b_{22}
\end{array}\right)
$$

with $b_{i, j}>0, i, j=1,2$ positive real numbers. It is clear that the eigenvalues of (13) are given by

$$
\begin{equation*}
\lambda=\frac{-\left(b_{11}+b_{22}\right) \pm \sqrt{\left(b_{11}+b_{22}\right)^{2}-4\left(b_{11} b_{22}+b_{12} b_{21}\right)}}{2} \tag{14}
\end{equation*}
$$

and the real part of both eigenvalues is strictly negative.

Uniqueness: topological degree
Consider initial values $\left(r_{1}, s_{1}\right) \in \operatorname{Int}(R)$ and the functions

$$
\begin{aligned}
V, W: \mathbb{R}_{+}^{2} & \rightarrow \mathbb{R}_{+}^{2} \\
(r, s) & \mapsto V(r, s):=(r, s)-(p(T ; 0, r, s), z(T ; 0, r, s)) \\
(r, s) & \mapsto W(r, s):=(r, s)-\left(r_{1}, s_{1}\right) \\
N(r, s, \xi):= & \left(r_{1}+\xi\left[p(T, r, s)-r_{1}\right] ; s_{1}+\xi\left[z(T, r, s)-s_{1}\right]\right) .
\end{aligned}
$$

where
$\square V(r, s) \neq(0,0) \neq W(r, s)$ for all $(r, s) \in \partial R$.
$-I-N$ is an admissible homotopy between V and W, then

$$
d[W, R, 0]=d[V, R, 0]=1
$$

The uniqueness follows from

$$
|J W(\varphi)|=\left(1-\lambda_{1}\right)\left(1-\lambda_{2}\right)>0 .
$$

Uniqueness: topological degree

Consider initial values $\left(r_{1}, s_{1}\right) \in \operatorname{Int}(R)$ and the functions

$$
\begin{aligned}
& V, W: \mathbb{R}_{+}^{2} \rightarrow \mathbb{R}_{+}^{2} \\
&(r, s) \mapsto V(r, s):=(r, s)-(p(T ; 0, r, s), z(T ; 0, r, s)) \\
&(r, s) \mapsto W(r, s):=(r, s)-\left(r_{1}, s_{1}\right) \\
& N(r, s, \xi):=\left(r_{1}+\xi\left[p(T, r, s)-r_{1}\right] ; s_{1}+\xi\left[z(T, r, s)-s_{1}\right]\right) .
\end{aligned}
$$

where
\square

- $I-N$ is an admissible homotopy between V and W, then

$$
d[W, R, 0]=d[V, R, 0]=1
$$

The uniqueness follows from

Consider initial values $\left(r_{1}, s_{1}\right) \in \operatorname{Int}(R)$ and the functions

$$
\begin{aligned}
V, W: \mathbb{R}_{+}^{2} & \rightarrow \mathbb{R}_{+}^{2} \\
(r, s) & \mapsto V(r, s):=(r, s)-(p(T ; 0, r, s), z(T ; 0, r, s)) \\
(r, s) & \mapsto W(r, s):=(r, s)-\left(r_{1}, s_{1}\right) \\
N(r, s, \xi):= & \left(r_{1}+\xi\left[p(T, r, s)-r_{1}\right] ; s_{1}+\xi\left[z(T, r, s)-s_{1}\right]\right) .
\end{aligned}
$$

where

- $V(r, s) \neq(0,0) \neq W(r, s)$ for all $(r, s) \in \partial R$.

■ $I-N$ is an admissible homotopy between V and W, then

$$
d[W, R, 0]=d[V, R, 0]=1
$$

The uniqueness follows from

Consider initial values $\left(r_{1}, s_{1}\right) \in \operatorname{Int}(R)$ and the functions

$$
\begin{aligned}
& V, W: \mathbb{R}_{+}^{2} \rightarrow \mathbb{R}_{+}^{2} \\
&(r, s) \mapsto V(r, s):=(r, s)-(p(T ; 0, r, s), z(T ; 0, r, s)) \\
&(r, s) \mapsto W(r, s):=(r, s)-\left(r_{1}, s_{1}\right) \\
& N(r, s, \xi):=\left(r_{1}+\xi\left[p(T, r, s)-r_{1}\right] ; s_{1}+\xi\left[z(T, r, s)-s_{1}\right]\right) .
\end{aligned}
$$

where

- $V(r, s) \neq(0,0) \neq W(r, s)$ for all $(r, s) \in \partial R$.

■ $I-N$ is an admissible homotopy between V and W, then

$$
d[W, R, 0]=d[V, R, 0]=1
$$

The uniqueness follows from

$$
|J W(\varphi)|=\left(1-\lambda_{1}\right)\left(1-\lambda_{2}\right)>0 .
$$

