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Models with coupling fast and slow processes.
Reduction of the dimension.
Non autonomous systems.
Different ways of introducing time dependence.
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Migrations and local interactions



Fast migrations - Slow local interactions

Two time scales model:
dp1

dτ
= −m1p1 + m2p2 + εf1(p1)

dp2

dτ
= m1p1 −m2p2 + εf2(p2)

(1)

Slow terms are in front of ε.

Time dependence on t = ετ
dp1

dτ
= −m1(ετ)p1 + m2(ετ)p2 + εf1((ετ),p1)

dp2

dτ
= m1(ετ)p1 −m2(ετ)p2 + εf2((ετ),p2)
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Slow-fast form

Slow variable z varies slowly: dz/dτ = O(ε)

Defining p = p1 + p2 and frequencies νi = pi/p yields


dν1

dτ
= m2(ετ)− (m1(ετ) + m2(ετ))ν1 + ε

f1((ετ), ν1p)

p

dp
dτ

= ε (f1((ετ), ν1p) + f2((ετ), (1− ν1)p))

(3)



Change variables s = (ετ − α)/ε and let ε→ 0 in (3):
dν1

ds
= m2(α)− (m1(α) + m2(α))ν1

dp
ds

= 0

For each α
ν∗1(α) =

m2(α)

m1(α) + m2(α)

is an A.S. equilibrium, uniformly in α.



Aggregation result

Let t = ετ and consider ν∗1(t) =
m2(t)

m1(t) + m2(t)

Theorem
If an uniformly AS solution p∗(t) exits for equation

dp
dt

= f1(t , ν∗1p) + f2(t , (1− ν∗1)p)

then, for each solution (pε1(t),pε2(t)) of system (2),

lim
ε→0

(pε1(t),pε2(t)) = (ν∗1(t)p∗(t), (1− ν∗1(t))p∗(t))

uniformly in closed subintervals of [t0,∞)

where mi , fi ∈ C2 are periodic functions of time, i = 1,2.



Fast dynamics depending on τ

When 
dp1

dτ
= −m1(τ)p1 + m2(τ)p2 + εf1((ετ),p1)

dp2

dτ
= m1(τ)p1 −m2(τ)p2 + εf2((ετ),p2)

when changing variable s = (ετ − α)/ε and letting ε→ 0, it
must exists m̄i := lim

ε→0
mi(s + α/ε)


dν1

ds
= m̄2 − (m̄1 + m̄2)ν1

dp
ds

= 0

(4)

has an A.S. equilibrium ν∗1 =
m̄2

m̄1 + m̄2
.
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General settings

Consider a population divided in A groups inhabiting q patches:

n = (n1, · · · ,nA) = (n11, · · · ,n1q, · · · ,nA1, · · · ,nAq) ∈ RqA

Our model couples fast migrations between patches with slow
local interactions:

dn1

dτ
= f1(?,n1) + εs1(ετ,n)

· · · time ? ∈ {τ, ετ}
dnA

dτ
= fA(?,nA) + εsA(ετ,n)

(5)

where
fi , si ∈ C2.
fi migrations of group i .
si interactions of group i with other(s) groups.



Slow-fast form

We consider:
the global (slow) variables

yi :=

q∑
k=1

nik i = 1, · · · ,A

the frequencies

xij =
nij

yi
i = 1, · · · ,A, j = 1, · · · ,q.

Rearranging variables n ∈ RqA ↔ (x,y) ∈ R(q−1)A × RA
dx
dτ

= F(?,x,y) + εS(?,x,y), x ∈ R(q−1)A

dy
dτ

= εGj(?,x,y), y ∈ RA.

(6)



Slow-fast form

If migrations are non autonomous and linear:

fj(?,nj) =



−m1j(?) αj
12m2j(?) · · · αj

1qmqj(?)

αj
21m1j(?) −m2j(?) · · · αj

2qmqj(?)

· · · · · · · · · · · ·

αj
q1m1j(?) αj

q2m2j(?) · · · −mqj(?)





n1j

n2j

· · ·
nqj



where ? ∈ {τ, ετ}, 0 ≤ αj
mk ≤ 1,

q∑
k 6=m,k=1

αj
mk = 1,

m = 1,2, · · · ,q, then



Fast dynamics depending on t = ετ

Theorem. Under the previous hypotheses, system (6) becomes{
x′t = F(t ,x) + εS(t ,x,y), x ∈ R(q−1)A

y′t = G(t ,x,y), y ∈ RA

where F,G,S ∈ C2 are ω-periodic on t . Assume that system

y = G(t ,x∗(t),y)

has an uniformly A.S. solution y∗(t). Then, for each ε > 0 small
enough, the corresponding solution (nε1(t), · · · ,nεA(t)) of the
original system (5) verifies

lim
ε→0

(nε1(t), ...,nεA(t)) =x∗1y∗1 ,

1−
q−1∑
k=1

x∗1k

 y∗1 , ...,x
∗
Ay∗A,

1−
q−1∑
k=1

x∗Ak

 y∗A


uniformly on closed subset of [t0,∞).
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Fast dynamics depending on τ

Theorem. Consider the system{
x′t = F(τ ,x) + εS(t ,x,y), x ∈ R(q−1)A

y′t = G(t ,x,y), y ∈ RA

where S,G are ω-periodic on t and lim
ξ→∞

F(ξ,x) = F̄(x). Assume

that system
y = G(t ,x∗,y)

has an A.S. solution y∗(t). Then, for each ε > 0 small enough,
the corresponding solution (xε(t), yε(t)) of the original system
(6) verifies

lim
ε→0

(nε1(t), ...,nεA(t)) =x∗1y∗1 ,

1−
q−1∑
k=1

x∗1k

 y∗1 , ...,x
∗
Ay∗A,
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For more general migration functions (for instance, a matrix
with periodic and denso-dependent coefficients,. . . )

dx
ds

= F(α,x,y) x ∈ R(q−1)A

dy
ds

= 0 y ∈ RA.

it is needed that system

x′s = F(α,x, β), (α,x, β) ∈ R× R(q−1)A × Rq

possess finitely many equilibrium x∗(α, β) isolated and A.S.
uniformly in (α, β).



Prey-predator system with refuge



dn1

dτ
= −m1(t)n1 + m2(t)n2+ε

[
λ1(t)n1

(
1− n1

k1(t)

)]
dn2

dτ
= m1(t)n1 −m2(t)n2+ε

[
λ2(t)n2

(
1− n2

k2(t)

)
− β2(t)n2p

1 + p

]
dp
dτ

= ε

[
−λ3(t)p +

β3(t)n2 p
1 + p

]
Coefficients are positive periodic functions of time t = ετ .

Consider
global variables: n = n1 + n2, p.
frequencies: ν1 = pi/p.
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, 1 = ν1(t) + ν2(t), ν∗1(t) = ν1(t)
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.



The aggregated system

Proceeding as before and rearranging terms we get the
aggregated system

n′t =

(
a(t)− b(t)n − c(t) p

1 + p

)
n

p′t =

(
−λ(t) +

f (t) n
1 + p

)
p

(7)

with ω-periodic positive coefficients.Where

a(t) = λ1(t)ν∗1(t)+λ2(t)(1−ν∗1) b(t) =
λ1(t)(ν∗1)2

k1(t)
+
λ2(t)(1− ν∗1)2

k2(t)

c(t) = β2(t)(1− ν∗1) λ(t) = λ3(t) f (t) = β3(t)ν∗1
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Looking for uniformly asymptotically stable solutions

The aggregated system (7) posses
The trivial solution: (n(t),p(t)) = (0,0)

Solving

p′t = −λ3(t)p and n′t = (a(t)− b(t)n)n

yield the semi-trivial solutions:
(n(t),p(t)) = (0,p∗(t)).
(n(t),p(t)) = (n∗(t),0) where n∗(t) is the periodic globally
asymptotically stable solution of the periodic logistic
equation with positive coefficients.

Positive solutions.
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Existence of periodic positive solutions

Using the maximum and minimum of the coefficients we get

(
aL − bMn − cM

p
1 + p

)
n ≤ n′t ≤

(
aM − bLn − cL

p
1 + p

)
n

(
−λM + fL

n
1 + p

)
p ≤ p′t ≤

(
−λL + fM

n
1 + p

)
p

(8)

Proposition
Every solution of the aggregated system (7) is uniformly
bounded, i.e.

lim
t→∞

(n(t),p(t)) ∈
[
0,

aM

bL

]
×
[
0,

fMaM

λLbL
− 1
]



Existence of periodic positive solutions

Invariant region R. 0 < λM
fL
< aL−cM

bM
.



Existence of periodic positive solutions

Invariant region R. 0 < λM
fL
< aL−cM

bM
.

We consider the ω-operator

ϕω : R → R
(r , s) 7→ ϕω(r , s) = ϕ(ω; 0, r , s)

Brouwer’s fixed point theorem: ϕ(ω,0, r , s) = ϕ(0,0, r , s)
and ϕ(t ,0, r , s) is positive, periodic and globally defined.



Stability and uniqueness

Linearizing around the positive periodic solution ϕ = (n0,p0)

Proposition
Every positive periodic solution of the aggregated system is
uniformly asymptotically stable

Using the topological degree

Proposition
If the positive invariant region R is bounded away from the
axes, then it contains one and only one positive periodic
solution of the aggregated system.



Proposition

If 0 <
λM

fL
<

aL − cM

bM
holds then, there exists a positive periodic

solution (n∗0(t), p∗0(t)) of the aggregated system such that each
solutions (nε1(t),nε2(t),pε(t)) of the complete system, for ε ∼ 0,

lim
ε→0

(nε1(t),nε2(t),pε(t)) = (ν∗1(t)n∗0(t), (1− ν∗1(t))n∗0(t),p∗0(t))

uniformly on closed subset of [t0,∞).
In this case, the semi-trivial solution is unstable.

Remark
The existence of (n∗0(t), p∗0(t)) depends on ν∗1(t) as
a(t), b(t), c(t), f (t) depend on ν∗1(t)
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Stability of the semi-trivial solution

Proposition
The semi-trivial solution is uniformly asymptotically stable if∫ t+T

t
(−λ(s) + f (s)n∗(s)) ds < 0.

In this case, for each solution (nε1(t),nε2(t),pε(t)) of the
complete system, for ε ∼ 0,

lim
ε→0

(nε1(t),nε2(t),pε(t)) = (ν1(t)n∗(t), (1− ν1)(t)n∗(t),0)

uniformly on closed subset of [t0,∞).

Remark
The stability of (n∗(t), 0) depends on ν∗1(t) as f (t) depends on
ν∗1(t).





We can recover the behavior of the solutions of the complete
model by means of uniformly asymptotically stable solutions of
the aggregated system.

Fast migrations can be replaced by processes reaching an
stable behavior (in a suitable way).
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Linearizing around the positive periodic solution (n0,p0) yields

X ′ = A(t)X (9)

where

A(t) =

(
a(t)− 2b(t)n0(t)− c(t) p0(t)

1+p0(t)
−c(t) n0(t)

(1+p0(t))2

f (t) p0(t)
1+p0(t)

−λ(t) + f (t) n0(t)
(1+p0(t))2

)
(10)

changing variables y1 = x1/n0, y2 = x2/p0 leads to

Y ′ = B(t)Y (11)

where

B(t) =

 −b(t)n0(t) −c(t)
p0(t)

(1 + p0(t))2

f (t)
n0(t)

1 + p0(t)
−f (t)

p0(t)n0(t)
(1 + p0(t))2

 , (12)

which is equivalent to (10).



Consider matrix (
−b11 −b12
b21 −b22

)
, (13)

with bi,j > 0, i , j = 1,2 positive real numbers. It is clear that the
eigenvalues of (13) are given by

λ =
−(b11 + b22)±

√
(b11 + b22)2 − 4(b11b22 + b12b21)

2
(14)

and the real part of both eigenvalues is strictly negative.



Uniqueness: topological degree

Consider initial values (r1, s1) ∈ Int(R) and the functions

V , W : R2
+ → R2

+

(r , s) 7→ V (r , s) := (r , s)− (p(T ; 0, r , s), z(T ; 0, r , s))
(r , s) 7→ W (r , s) := (r , s)− (r1, s1)

N(r , s, ξ) := (r1 + ξ [p(T , r , s)− r1] ; s1 + ξ [z(T , r , s)− s1]) .

where
V (r , s) 6= (0,0) 6= W (r , s) for all (r , s) ∈ ∂R.
I − N is an admissible homotopy between V and W , then

d [W ,R,0] = d [V ,R,0] = 1

The uniqueness follows from

|JW (ϕ)| = (1− λ1)(1− λ2) > 0.
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