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m Models with coupling fast and slow processes.
m Reduction of the dimension.

m Non autonomous systems.

m Different ways of introducing time dependence.




Migrations and local interactions
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Fast migrations - Slow local interactions
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Fast migrations - Slow local interactions

Two time scales model:

a
% = —myp1 + Mppz + €fi(py)

a
% = Mypy — MoP2 + ehr(p2)

m Slow terms are in front of e.

m Time dependence on t = er

o/
S = —my(er)pr + me(en)pa + h((e7), Py)

o]
% = my(eT)p1 — Ma(eT)p2 + efo((eT), P2)



Slow-fast form

m Slow variable z varies slowly: dz/dT = O(e)

m Defining p = p; + p2 and frequencies v; = p;/p yields

B mp(er) — (my(er) + ma(er)s + ¢

an _ f1((67'),111p)
ar p

Zg =e(fi((er),v1p) + fa((eT), (1 — v1)P))



Change variables s = (e — a)/e and let e — 0 in (3):

CZ: = ma(a) — (m() + ma(a))vy
dp
4 0

For each « (o)
* . (o
vi(a) = my () + mo(a)

is an A.S. equilibrium, uniformly in «.



Aggregation result

mg(t)

Let t = er and consider v (t) = (D) + ma(D)
1 2

Theorem
If an uniformly AS solution p*(t) exits for equation

P _
dt
then, for each solution (p§(t), p5(t)) of system (2),

(P (1), pa(t)) = (i ()" (1), (1 — v5(1))p*(1))

fi(t,vip) + fa(t, (1 — v7)p)

lim
e—0

uniformly in closed subintervals of [ty, o)

where m;, f; € C? are periodic functions of time, i = 1, 2.
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Fast dynamics depending on

When
a
% = —my(7)p1 + Ma(7)p2 + €fy((e7), Py)
a
% = my(7)p1 — ma(7)p2 + efa((eT), P2)

when changing variable s = (er — a)/e and letting e — 0, it
must exists m; := Iirrg) mi(s+ a/e)
€E—>

9y (g + v
ds_ 2 1 2 )71

do
%_0

I m
has an A.S. equilibrium v} = ——2_—.
my + mo




General settings

Consider a population divided in A groups inhabiting q patches:
n= (n.I’... ’nA) = (nﬁ’... Mg, Nat, -+ anAq) ERqA

Our model couples fast migrations between patches with slow
local interactions:

It (e ny) + es1(er, )
ar _
time x € {7, er} (5)
dnA
—— =fa(x,na) + esa(er,n)
ar
where
mf,s c C2.

m f; migrations of group /.
m s, interactions of group /i with other(s) groups.



Slow-fast form
We consider:
m the global (slow) variables

q
Yii=>_ N =1 A
k=1
m the frequencies
Xij =
Rearranging variables n € R% « (x,y) € R(G=DA x RA
= F(x,X,y) + €S(%,X,y), x € R@-1A

dr
(6)
Zy = ¢Gj(x,x.Y), y € RA



Slow-fast form

If migrations are non autonomous and linear:

—mi(x)  domyi(x) oo ahgmgi(x)

I7~|j
ohymyj(x)  —mp(x) - o qMai(*) Ny
f,(x,n)) = !
, Ngj
ol mj(x)  apmaj(x) - —mgi(x)

. q .
where x € {1, er},0 < O‘jmk <1, Z ajmk =
k#m,k=1
m=1,2,---,q, then



Fast dynamics depending on t = er

Theorem. Under the previous hypotheses, system (6) becomes

X} = F(t,x) + ¢S(t,x,y), x € RG-DA
yi =G(t,x.y), y € RA

where F, G, S € C? are w-periodic on t. Assume that system
y = G(t,x7(1),y)

has an uniformly A.S. solution y*(t).



Fast dynamics depending on t = er

Theorem. Under the previous hypotheses, system (6) becomes

X} = F(t,x) + ¢S(t,x,y), x € RG-DA
yi = G(t,x,y), y € R

where F, G, S € C? are w-periodic on t. Assume that system
y = G(t,x7(1),y)

has an uniformly A.S. solution y*(t). Then, for each ¢ > 0 small
enough, the corresponding solution (n§(t),--- ,n%(t)) of the
original system (5) verifies

lim (n§ (1), ...,n5(1) =

e—0

qg—1 g—1
(xTy‘I*a (1 - ZXTK) Y1*a ”'7xj2\y;£7 (1 - ZXZK> yZ)
k=1 k=1

uniformly on closed subset of [fy, o0).



Fast dynamics depending on

Theorem. Consider the system

X} = F(7,%) +€S(t,x,y), x € REDA
y; = G(t,x,y), yeRA

where S, G are w-periodic on t and Elim F(¢,x) = F(x). Assume
—00
that system
y =G(t,x",y)

has an A.S. solution y*(t). Then, for each € > 0 small enough,
the corresponding solution (x(t), y.(t)) of the original system
(6) verifies

6|i_rg(n§(t), ., Ng(h) =

q—1 q—1
(XTJ«*, (1 - ZXTk) Yiseoes XaYa, (1 - ZXZK) yZ)
k=1 k=1

uniformly on closed subset of [f, c0).



For more general migration functions (for instance, a matrix
with periodic and denso-dependent coefficients,. . .)

ax

g5 Fla,x,y) xeR
day A
ds = 0 y € R

it is needed that system
X;=F(a,x,8),  (a,X,B) €RxREODAXRI

possess finitely many equilibrium x*(«, 3) isolated and A.S.
uniformly in (a, 3).



Prey-predator system with refuge

( dn
d771 = —my(t)ny + mo(t)ny
an
d—: =my(t)ny — mo(t)ne

\

Coefficients are positive periodic functions of time t = er.



Prey-predator system with refuge

( CZ: = fm1(t)n1 + mg(t)ng +e€ [A1(t)n1 <1 — k1n(1t)>:|
C;n: = my(t)ny — ma(t)ne

\

Coefficients are positive periodic functions of time t = er.



Prey-predator system with refuge

( CZ: = —my(t)n + ma(t)np + € [)\1(t)n1 <1 a k:?")ﬂ

do Ba(t)ne p
\E_E —A3(t)p + 11p ]

Coefficients are positive periodic functions of time t = er.



Prey-predator system with refuge

r CZ‘: _ fm1(t)n1 + mg(t)ng + € |:)\1(t)n1 <1 _ k1n(1t)>:|
( Zg =€ [As(f)P ﬁ31( J)rn;p]

Coefficients are positive periodic functions of time t = er.

P
T+p
T




Prey-predator system with refuge

c(ljr: = —my(t)ny + ma(t)ns + € [M(t)m <1 _ k1n(1t)ﬂ
‘Z’f = my(t)ny — ma(t)nz + € [)\g(t)nz (1 - k:(zt)) N ﬁi(insp]
| P |raltp+ BO2E)

Coefficients are positive periodic functions of time.

Consider:
m global variables: n = ny + no, p.

. n; v
m frequencies: v; = FI 1 =v1(t) + vo(t), vi(t) = W(tll)z(l‘)



The aggregated system
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aggregated system
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The aggregated system

Proceeding as before and rearranging terms we get the
aggregated system

n = a(z‘)—b(z‘)n—M n

1+p
)
f(t) n> b

/ _

with w-periodic positive coefficients.Where

MOEE M) —vi)2
b0 == ()

c(t) = Bo()(1 =) A1) =As(t) (1) = Ba(t)vq

a(t) = M (1) (H+2e(D)(1-17)
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Looking for uniformly asymptotically stable solutions

The aggregated system (7) posses
m The trivial solution: (n(t), p(t)) = (0,0)
m Solving

pi=-X3(t)p and  nj=(a(t) — b(t)n)n

yield the semi-trivial solutions:
m (n(t), p(t)) = (0, p*(1)).
m (n(t),p(t)) = (n*(t),0) where n*(t) is the periodic globally
asymptotically stable solution of the periodic logistic
equation with positive coefficients.

m Positive solutions.




Existence of periodic positive solutions

Using the maximum and minimum of the coefficients we get

p p
1+p>n§n§§ <aM—bLn—cL1+p>n

(aL — an — Cm

<—>\M+fL L >P§P§§ <—>\L+an>P

1+p 1+p

Proposition

Every solution of the aggregated system (7) is uniformly
bounded, i.e.

lim (n(t), p(t)) € [o, Z_ﬂ y [0, Loy 1]




Existence of periodic positive solutions
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Existence of periodic positive solutions

R

Pl

Invariant region R. 0 < 2 < &%,
L M

m We consider the w-operator

vo:R — R
(r,s) — @u(r,s)=pw;0,r,s)

m Brouwer’s fixed point theorem: ¢(w, 0, r,s) = ¢(0,0,r,s)
and ¢(t,0,r, s) is positive, periodic and globally defined.



Stability and uniqueness

Linearizing around the positive periodic solution ¢ = (ng, po)

Proposition

Every positive periodic solution of the aggregated system is
uniformly asymptotically stable

Using the topological degree

Proposition

If the positive invariant region R is bounded away from the
axes, then it contains one and only one positive periodic
solution of the aggregated system.




Proposition

If0 < )}—M < ab_—CM
so/ut/on (g (1), po(t)) of the aggregated system such that each
solutions (n$(t), n5(t), p°(t)) of the complete system, for e ~ 0,

lim (ni (1), na(), (1)) = (v1 () (), (1 — w1 (£))m6(2), Po (1))

holds then, there exists a positive periodic

uniformly on closed subset of [, >0).
In this case, the semi-trivial solution is unstable.




Proposition

lf0<f—<a L~ Cwm

bum
solution (no(t) po(t)) of the aggregated system such that each
solutions (n$(t), n5(t), p°(t)) of the complete system, for e ~ 0,

lim (ni (1), na(), (1)) = (v1 () (), (1 — w1 (£))m6(2), Po (1))

holds then, there exists a positive periodic

uniformly on closed subset of [ty, 00).
In this case, the semi-trivial solution is unstable.

| A

Remark

The existence of (n§(t), p;(t)) depends on v (t) as
a(t), b(t), c(t), f(t) depend on vy (t)




Stability of the semi-trivial solution

The semi-trivial solution is uniformly asymptotically stable if

T
[ e+ o as <o
t

In this case, for each solution (n(t), n5(t), p(t)) of the
complete system, fore ~ 0,

lim (nf (1), n5(1), (1)) = (w1 (1) (1), (1 —4) (1) (1), 0)

uniformly on closed subset of [fy, o).

Remark
The stability of (n*(t), 0) depends on v;(t) as f(t) depends on
vi(t).

| A

\
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We can recover the behavior of the solutions of the complete
model by means of uniformly asymptotically stable solutions of
the aggregated system.



We can recover the behavior of the solutions of the complete
model by means of uniformly asymptotically stable solutions of
the aggregated system.

Fast migrations can be replaced by processes reaching an
stable behavior (in a suitable way).
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Linearizing around the positive periodic solution (g, pg) yields

X' = A(t)X 9)
where
a(t) — 2b(t)no(t) — c(t) 2l —o(t) Lol
o iy TR e, )
(1) 250 —\(t) + f(t)Uﬂgo(t)%z

changing variables y; = x1/ng, y» = X2/po leads to

Y = B(t)Y (11)
where
—b(t)no(t) —c(t)poi(t)
B (1 + po(1))?
S IO _f(t)m(f)f%(f; -
1+ po(t) (1 + po(t))?

which is equivalent to (10).



Consider matrix b
—b11 —br2 )
, 13
< bay  —boo (13)
with b;; > 0, i,j = 1,2 positive real numbers. It is clear that the
eigenvalues of (13) are given by

(b11 + bag) + v/ (b11 + b22)2 — 4(by1 b2z + b1obay)

A= 5

(14)

and the real part of both eigenvalues is strictly negative.
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Consider initial values (ry, 1) € Int(R) and the functions

V. W: Ri — ]R?F
(r,s) — V(r,s):=(r,s)—(p(T;0,r,8),2z(T;0,r,s))
(r,s) — W(r,s):=(r,s)—(r1,51)

N(r,s,&) = (rn+&[p(T,r,8)—nl; st +&[2(T,r,s) — sq]).
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m V(r,s)#(0,0) # W(r,s) forall (r,s) € OR.
m /— N is an admissible homotopy between V and W, then

d[W,R,0]=d[V,R,0] =1



Uniqueness: topological degree

Consider initial values (ry, 1) € Int(R) and the functions

V. W: Ri — ]RZ+
(r,s) — V(r,s):=(r,s)—(p(T;0,r,8),2z(T;0,r,s))
(r,s) — W(r,s):=(r,s)—(r1,51)

N(r.s, &) = (rn+&[p(T,r.s) —nl; s1+£[2(T,r.s) = s1]).
where

m V(r,s)#(0,0) # W(r,s) forall (r,s) € OR.

m /— N is an admissible homotopy between V and W, then

d[W,R,0]=d[V,R,0] =1
The uniqueness follows from

[IW(p)] = (1 —X1)(1 = A2) > 0.



