
TIME SCALES AND EPIDEMICS ON SMALL NETWORKS.
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Why time scales? Towns and their influence area can be partitioned in patches attending to features as healthiness or exposure to vectors. Mass pub-
lic/private transport enables individuals to move between patches several times daily. These movement rates are large compared with epidemic parameters, for
instance, when dealing with diseases with low transmission and recovery rates.
Summing up, models coupling two processes which evolve at (very) different rates yield two time scale systems.
.
How does it work? We sketch the so called quick derivation method for
autonomous systems [1] which (formally) works almost the same for nonau-
tonomous systems [2], [4]. Let f, s : RN → RN stand for the fast and the slow
process. The prototype of two time scale systems reads as

dn/dτ = f (n) + εs(n) (1)

where parameter ε ∼ 0+ stands for time scales ratio. Let us change variables
n 7→ (x, y) ∈ RN−k × Rk in (1) where y, the slow variables, are invariant by
the fast process. Changing variables in (1) yields{

dx/dτ = F (x, y) + εG(x, y),

dy/dτ = εS(x, y).

Let (x∗(y), y) be an asymptotically stable equilibrium of dx/dτ = F (x, y) for
each y ∈ Rk. The so-called fast equilibrium x∗ enables a sort of variables
decoupling and dimension reduction. Namely, we can get certain asymptotic
information of system (1) through the reduced system

dy/dt = S(x∗(y), y) where t = ετ. (2)

APPLICATIONS. Based in [3] we consider a population living in a N
patches environment. There is a SIS-epidemic process at each patch and indi-
viduals can move between patches. At patch j (j = 1, · · · , N )
• Sj, Ij stand for susceptible and infected individuals.
• βj, γj stand for the infection and recovery rates,
•mS

ij, m
I
ij stand for the susceptible and infected displacement rate from

patch j to patch i.
The equations at patch j of the two time scales system read as follows

dSj/dτ = −
∑
l 6=j

mS
ljSj +

∑
l 6=j

mS
jlSl + ε

[
−βjSjIj
Sj + Ij

+ γjIj

]
,

dIj/dτ = −
∑
l 6=j

mI
ljIj +

∑
l 6=j

mI
jlIl + ε

[
βjSjIj
Sj + Ij

− γjIj
]
.

(3)

In order to reduce the model we note that
•We change variables (S1, I1, · · · , SN , IN) 7→ (S, I, S2, I2, · · · , SN , IN); the
slow variables I :=

∑
Ij, S :=

∑
Sj are invariant by displacements.

•Displacements in (3) are linear and can be represented through matrices
MS and MI defined in terms of mS

ij and mI
ij. MS and MI are assumed to be

irreducible. Considering just fast dynamics (ε = 0 in (3)) variables achieve
a stable distribution among patches

lim
τ→∞

(S1(τ ), · · · , SN(τ )) = (µ1, · · · , µN)S,

lim
τ→∞

(I1(τ ), · · · , IN(τ )) = (ν1, · · · , νN) I,

which yields the fast equilibrium. Applying the quick derivation method to
the system (3) (dimension 2N ) yields the reduced (dimension 2) system

dS/dt =

N∑
j=1

−µjνjβjSI
µjS + νjI

+

N∑
j=1

νjγjI,

dI/dt =

N∑
j=1

µjνjβjSI

µjS + νjI
−

N∑
j=1

νjγjI,

(4)

Autonomous case. If parameters in system (3) are constant. Then,
Theorem 1 . Consider system (3) and define the global reproductive number

R̄0 :=

∑
j νjβj∑
j νjγj

. Then, ∃ε0 > 0 such that ∀ε ∈ (0, ε0) if R̄0 < 1 then epi-

demics is eradicated and if R̄0 > 1 epidemics becomes endemic. In this case

lim
τ→∞

(S1(τ ), I1(τ ) · · · , SN(τ ), IN(τ )) = (µ1S
∗, ν1I

∗, · · · , µNS∗, νNI∗) (5)

where (S∗, I∗) is the unique positive equilibrium point of system (4).

Time scales: does it matter? The figure shows the outcome of system (3)
(N = 2) when we consider (or not) displacements and we distinguish (or not)
time scales:
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Evolution in time of the number of susceptible (blue) and infected individuals (green).
Parameter values mS

12 = 1; mS
21 = 2; mI

11 = 1; mI
21 = 2; β1 = 2; β2 = 3; γ1 = 4; γ2 = 2

Nonautonomous case. We re-estate theorem 1 following [4]
Theorem 2 . Assume that the epidemic parameters in system (3) are ω-

periodic functions of time and define R̄0 :=

∑
j νj
∫ ω

0 βj(t)dt∑
j νj
∫ ω

0 γjdt
. Then, for each

ξ > 0 exist εξ, tξ > 0 such that for all ε ∈ (0, εξ) and t > tξ

‖ (S1(t), I1(t) · · · , SN(t), IN(t))− (µ1S
∗, ν1I

∗, · · · , µNS∗, νNI∗) ‖ < ξ,

where:
R̄0 < 1⇒ epidemics is eradicated, i.e. I∗ = 0, S∗ ≡ total population size.
R̄0 > 1⇒ (S∗, I∗) is the unique positive periodic solution of system (4).

Next figure displays the periodic counterpart of the previous figure:
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Evolution in time of the number of susceptible (blue) and infected individuals (green). Param. val. mS
12 = 1;

mS
21 = 2; mI

11 = 1; mI
21 = 2; β1 = 1 + cos(t); β2 = 7 + cos(t); γ1 = 5 + 0.1 cos(t); γ2 = 1 + 0.1 cos(t)

Ongoing work and further results.
•Numerical simulations show that epidemics evolve differently when time
scales are (or not) considered. We seek for explicit comparatives between
the corresponding reproductive numbers.

• The nonautonomous case admits periodic fast dynamics and asymptoti-
cally autonomous terms.
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[4] M. Marvá, J.-C. Poggiale, R. Bravo de la Parra. (2012) Approximate ag-
gregation of a two time scales periodic multi-strain SIS epidemic model: a
patchy environment with fast migrations.Ecological Complexity.10, 34–41.

.
EPINET-2012. Girona. Address for correspondence: marcos.marva@uah.es


