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Reduction method Variables Aggregation Competition model

General settings

1
2

3 A

~N = ( ~N1, ..., ~Nc)
Population divided in c classes

Spatial distribution of individuals

of class j
~Nj = (Nj1, ..., NjA)

pjrs fraction of individuals of class j

patch s → patch r
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3 A

~N = ( ~N1, ..., ~Nc)
Population divided in c classes

Spatial distribution of individuals

of class j
~Nj = (Nj1, ..., NjA)

pjrs fraction of individuals of class j

patch s → patch r

Matrix Fj =
(
pjrs

)
is stochastic; movements are given by

Local interactions are described by matrix S(N)

~N(t + 1) = diag (F1, · · · ,Fc) ~N(t) = F ~N(t)

~N(t + 1) = S( ~N(t)) ~N(t)
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Reduction method Variables Aggregation Competition model

General settings

Local interactions are slower than individual displacements.
Two time scales⇔ two time units: chose the slower one!!

~N(t + 1) = S ◦
k times︷ ︸︸ ︷

F ◦ F · · · ◦ F
(
~N(t)

)
= S ◦ F(k)

(
~N(t)

)

In our case it reads as

~N(t + 1) = S(F k~N(t)) · F k~N(t) (1)

Being Fj stochastic implies lim
k→∞

F k
j = vj1T

where vj and 1T
j are its left and right main eigenvectors.

lim
k→∞

F k = F̄ = diag(v1 · · · vc)︸ ︷︷ ︸
Ac×c

· diag(1T
1 · · · 1T

c )︸ ︷︷ ︸
c×Ac

= E · G
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Reduction method Variables Aggregation Competition model

Approximate aggregation

We approximate the complete system

~N(t + 1) = S(F k~N(t)) · F k~N(t)

of dimension A · c by the auxiliary system

~N(t + 1) = S(F̄~N(t)) · F̄~N(t) = S(E · G~N(t)) · E · G~N(t) (2)

Defining the global variables

~Y = G~N yj = nj1 + · · ·+ njA

yields the aggregated system, of dimension c,

~Y(t + 1) = G · S(E~Y(t)) · E~Y(t) (3)
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Approximate aggregation

~N(t + 1) = S(F k~N(t)) · F k~N(t) ~Y(t + 1) = G · S(E~Y(t)) · E~Y(t)

General results

If ~Y∗ ∈ RA is a hyperbolic fixed point of the reduced system (3) then
1 ∀k ≥ k0 the complete system (1) has an unique fixed point

~X∗k ∈ B̄r

(
E~Y∗

)
which is hyperbolic and

lim
k→∞

~X∗k = E~Y∗

2 ~Y∗ is A.S. (U.) if, and only if ~X∗k (∀k ≥ k1) are A.S. (U.)
3 The basin of attraction of ~X∗k can be described from that of ~Y∗

L. Sanz, R. Bravo de la Parra, E. Sánchez. Two time scales non-linear discrete models approximate reduction.
Journal of Difference Equations and Applications, 14 (2008), No. 6, 607–627.
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Reduction method Variables Aggregation Competition model

Two patches competing species with fast movements

Notations: ~N = (N1
1 ,N

2
1 ,N

1
2 ,N

2
2 ) = (~N1, ~N2), ni = N1

i + N2
i

Fast dynamics: constant displacement 0 < pi, qi < 1

Fi =

(
1− pi qi

pi 1− qi

)
, lim

k→∞
F k

i =

(
ν∗i

1− ν∗i

)(
1 1

)
= F̄i

Slow dynamics: local Leslie-Gower competition model bj
i, ck

ij > 0

N1
1 (t + 1) =

b1
1

1 + c1
11N1

1 (t) + c1
12N1

2 (t)
N1

1 (t)

N2
1 (t + 1) =

b2
1

1 + c2
11N2

1 (t) + c2
12N2

2 (t)
N2

1 (t)

N1
2 (t + 1) =

b1
2

1 + c1
21N1

1 (t) + c1
22N1

2 (t)
N1

2 (t)

N2
2 (t + 1) =

b2
2

1 + c2
21N2

1 (t) + c2
22N2

2 (t)
N2

2 (t)

⇒ S (N̄) = S (N̄) N̄

J.M. Cushing, S. Levarge, N. Chitnis, S.M. Henson. Some Discrete Competition Models and the Competitive
Exclusion Principle Journal of Difference Equations and Applications, 10(13-15):1139-1151, 2004.
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Aggregated model and global variables

Complete model: ~N(t + 1) = S
(
F k ~N(t)

)
· F k ~N(t)

Aggregated system:

{
n1(t + 1) = f (n1(t), n2(t))n1(t)

n2(t + 1) = g(n1(t), n2(t))n2(t)
where

f (n1, n2) =

(
b1

1ν
∗
1

1 + c1
11ν
∗
1 n1 + c1

12ν
∗
2 n2

+
b2

1(1− ν∗1 )

1 + c2
11(1− ν∗1 )n1 + c2

12(1− ν∗2 )n2

)

g(n1, n2) =

(
b1

2ν
∗
2

1 + c1
21ν
∗
1 n1 + c1

22ν
∗
2 n2

+
b2

2(1− ν∗2 )

1 + c2
21(1− ν∗1 )n1 + c2

22(1− ν∗2 )n2

)

All solutions in [0,∞)× [0,∞) converge to an equilibrium in an
eventually monotonic manner.

J.M. Cushing, S. Levarge, N. Chitnis, S.M. Henson. Some Discrete Competition Models and the Competitive
Exclusion Principle Journal of Difference Equations and Applications, 10(13-15):1139-1151, 2004.
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Results from the aggregated system:

The trivial equilibrium point (0, 0).

The semitrivial equilibrium points (n∗1, 0), (0, n∗2) always exist
and can be explicitly calculated.

No explicit expression for positive equilibrium (if any)

Equilibrium Asint stable Unstable
(0, 0) 0 < br

ij < 1 br
ij > 1

(n∗1, 0) g(n∗1, 0) < 1 g(n∗1, 0) > 1
(0, n∗2) f (0, n∗2) < 1 f (0, n∗2) > 1

global coex

Are there displacements-competition tradeoffs? Assume:
* Spatial homogeneity
* Asymmetric competition
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Numerical experiments

b = 1.5, c21 = 1.1, c12 = 0.9 b = 1.5, c21 = 1.5, c12 = 0.9 b = 1.5, c21 = 3, c12 = 0.9

White species 1 globally excludes species 2
Yellow global coexistence
Blue species 2 globally excludes species 1

D. Nguyen Ngoc, R. Bravo de la Parra, M.A. Zavala, P. Auger Competition and species coexistence in a
metapopulation model: Can fast asymmetric migration reverse the outcome of competition in a homogeneous
environment? Journal of Theoretical Biology, 266:256-263, 2010.
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Thanks; questions?

About approximate aggregation of discrete systems
R. Bravo de la Parra, M. Marvá, E. Sánchez, L. Sanz
Reduction of Discrete Dynamical Systems with Applications to Dynamics Population Models
Mathematical Models of Natural Phenomena, (to appear).

L. Sanz, R. Bravo de la Parra, E. Sánchez. Two time scales non-linear discrete models approximate reduction.
Journal of Difference Equations and Applications, 14 (2008), No. 6, 607–627.

About approximate aggregation, including ODEs and PDEs
P. Auger, R. Bravo de la Parra, J.-C. Poggiale, E. Sánchez, T. and Nguyen-Huu
Aggregation of variables and applications to population dynamics
In P. Magal, S. Ruan (Eds.), Structured Population Models in Biology and Epidemiology,
Lecture Notes in Mathematics 1936, Mathematical Biosciences Subseries, Springer Verlag, Berlin, 2008, 209–263.
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