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Dpto de Fı́sica y Matemáticas, Dip. di Matematica “Giuseppe Peano”,

Universidad de Alcalá. Università di Torino
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Abstract A coinfective disease (also known as opportunistic) is one that can invade an organism given the ”opportunity” of a weakened immune system.
Typically, a long illness period is needed to damage, and keep damaged, the immune system enabling the secondary invasion. Then, infected individuals by the
primary (slow) infection can be also classified as susceptible or infected by the secondary (fast) disease.

It is of interest understanding the interrelation between the two infectious processes: possible feedback phenomenon, strengthening effect, effect of the secondary
disease on persistence primary infection thresholds, etc. In spite of the impact of coinfection in public health [2], [3], there are few mathematical models devoted
to understand this phenomenon. A major difficulty is that the resulting equations systems consist of a large number of coupled equations. We assume that the
main infection and the secondary one evolve in different time scales. Then, approximate aggregation methods [1] apply to get a less dimensional system
attaining asymptotic information of the complete model.
.
How does it work? The approach relies on approximate aggregation
techniques for time scale systems [1]. Let f, s : RN → RN stand for the
fast and the slow process. The prototype of two time scale systems reads as

dn/dτ = f (n) + εs(n) (1)

where parameter ε ∼ 0+ stands for time scales ratio. Let us change variables
n 7→ (x, y) ∈ RN−k × Rk in (1), which yields the slow fast form

{
dx/dτ = F (x, y) + εG(x, y),

dy/dτ = εS(x, y).

where x and y are the fast and the slow variables. Assume that for each
y ∈ Rk, (x∗(y), y) is a hyperbolic asymptotically stable (fast) equilibrium of
dx/dτ = F (x, y). If the reduced system

dy/dt = S(x∗(y), y) where t = ετ, (2)

has a hyperbolic equilibrium y∗, we can describe the behavior of system (1) in
terms of (x∗(y∗), y∗) (see theorem 1). More general cases are allowed; see [1].

A toy model There is a slow disease; we note S and I the susceptible
and infected individuals. Those infected by the slow disease are then suscep-
tible, Is, or coinfected, Ic, by the fast disease. Coinfected individuals are more
infective and recover less than infected non-coinfected. Furthermore
• For the slow disease dynamics, individuals get infected at rate bc (bs) when
they meet a coinfected (a non-coinfected). Coinfected (non-coinfected) in-
dividuals recover at rate gc (gs). Transmission follows true mass action law,
as the process is slow, the population is homogeneously mixed.
• For the fast disease individuals get infected (recovered) at rate γ (β) ac-
cording to the standard law.
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Assuming the existence of time scales yields system



dS

dτ
= ε (−bsSIs − bcSIc + gsIs + gcIc) ,

dIs
dτ

= −β IsIc
Is + Ic

+ γIc+ ε (bsSIs + bcSIc − gsIs)

dIc
dτ

= β
IsIc
Is + Ic

− γIc+ ε (−gcIc)

(3)

Introducing the slow variable I = Is + Ic, we get the fast equilibrium

(I∗s , I
∗
c ) = (µs, µc)I, where (µs, µc) =

{
(γ/β, 1− γ/β) if R0 > 1

(1, 0) if R0 < 1
(4)

given R0 = β/γ the reproductive number of the fast disease. Then, we derive
the reduced system in which (µs, µc) depend on whether γ/β < 1 as in (4)





dS

dt
= −(bSµS + bCµC)SI + (gSµS + gCµC)I,

dI

dt
= (bSµS + bCµC)SI − (gSµS + gCµC)I,

(5)

Main results The aggregated system (5) looks like the classic SIS model
following true mass action transmission law. Then, we can define the global
reproductive number

R̄0 =
bSµS + bCµC
gSµS + gCµC

N, (6)

which depends on the fast equilibrium and on N , the total population. Fur-
thermore

Theorem 1 . The solution of the system (3) starting at (S0, I0
s , I

0
c ) satisfies

S(t) = S∗ + o(1), Is(t) = µsI
∗ + o(1), Ic(t) = µcI

∗ + o(1),

as ε→ 0+ uniformly on [t1,∞), where t0 < t1 and

(S∗, I∗) =

{
(Λ, N − Λ) if R̄0 > 1

(N, 0) if R̄0 < 1
and Λ =

gsµs + gcµc
bsµs + bcµc

N is the population density and (µs, µc) depend on whether γ/β < 1 as in (4).

The eradication of the fast disease has relevant influence on the system’s
outcome. Direct calculations show that R̄0 is larger when R0 > 1 than when
R0 < 1, since coinfected individuals are more infective and recover less than
infected non-coinfected. Indeed, expression (6) allows us to quantify the in-
crease of R̄0 as R0 crosses 1.
The decision of including or not time scales has consequences on the anal-
ysis Indeed, the Figures below display system (3) with the same initial values
but ε = 1 (left, coinfected disappear) and ε = 0.01 (right, coinfected become
endemic)
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