

A SLOW-FAST MODEL FOR COINFECTION BY OPPORTUNISTIC DISEASES

M. Marvá, R. Bravo de la Parra Dpto. de Física y Matemáticas, Universidad de Alcalá 28871 Alcalá de Henares, Spain

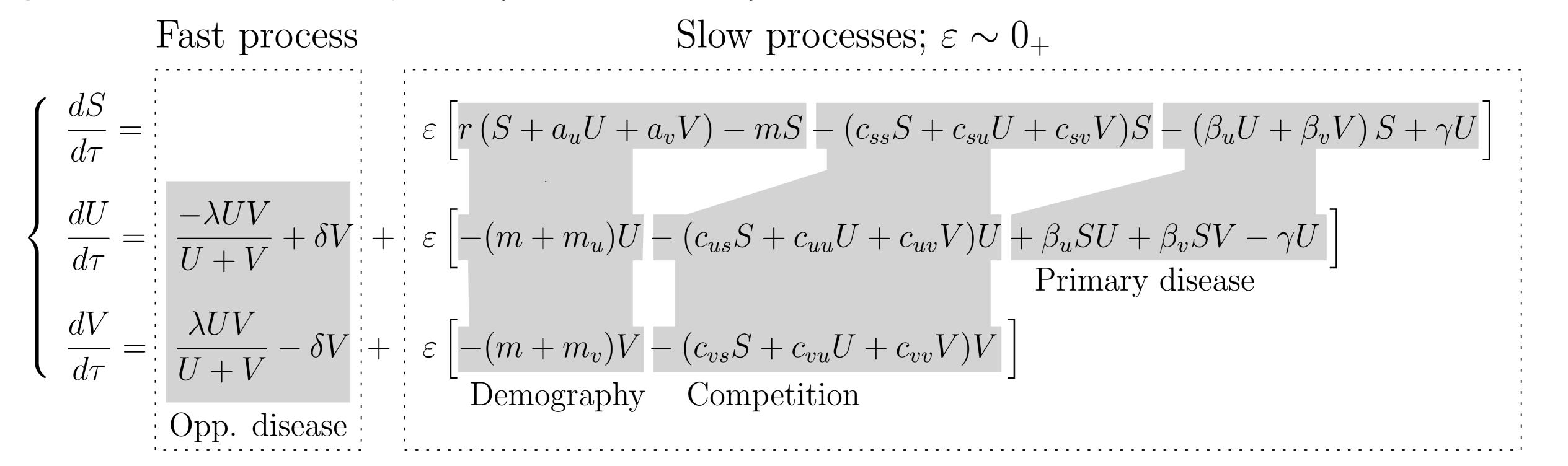
E. Venturino Dip. di Matematica "Giuseppe Peano", Università di Torino via Carlo Alberto 10, 10123 Torino, Italy

Abstract Traditional biomedical approaches treated each disease in isolation. Nowadays, it is increasingly recognized that synergistic disease interactions are of great importance [2]. We consider a host population affected by an infectious disease, *primary disease*, which facilitates individuals acquiring a *secondary (opportunistic) disease*. The primary disease is a rather long-term infection while the secondary disease is a short-term infection affecting only the infected individuals of the primary disease. To distinguish between short and long-term infection the model is written in the form of a two time scales system. This feature allows a dimension reduction of the system what makes its mathematical analysis more tractable [1].

The model We consider three epidemiological stages: susceptible S, primary infected U and coinfected V. There are slow and fast processes • Slow time scale: The primary disease transmission is density dependent with recovery rate γ and transmission rates β_u , β_v . The model includes demography with death rate m, disease extra mortality rates m_u , m_v , reproduction rate r (and the disease reductions $0 < a_v \le a_u \le 1$). The effect on individuals in class q of competition with individuals in class p is denoted by c_{pq} , for $p, q \in \{s, u, v\}$.

• Fast time scale: The opportunistic disease transmission is frequency dependent with recovery rate δ and transmission rate λ .

Considering together the slow and the fast dynamics yields the slow-fast system



How does it work? The approach relies on *approximate aggregation techniques* for time scale systems [1]. Let $f, s : \mathbb{R}^N \to \mathbb{R}^N$ stand for the fast and the slow process. The prototype of *two time scale systems* reads as $dn/d\tau = f(n) + \varepsilon s(n)$ (1)

where x and y are the <u>fast</u> and the <u>slow variables</u>. Assume that for each $y \in \mathbb{R}^k$, $(x^*(y), y)$ is a hyperbolic asymptotically stable <u>(fast)</u> equilibrium of $dx/d\tau = F(x, y)$. If y^* is a hyperbolic equilibrium of the reduced system

$$dy/dt = S(x^*(y), y)$$
 where $t = \varepsilon \tau$, (2)

where parameter $\varepsilon \sim 0^+$ stands for time scales ratio. Let us change variables $n \mapsto (x, y) \in \mathbb{R}^{N-k} \times \mathbb{R}^k$ in (1), which yields the slow-fast form $\begin{cases} dx/d\tau = F(x, y) + \varepsilon G(x, y), \\ dy/d\tau = \varepsilon S(x, y). \end{cases}$

Results Using the reduction technique, the original slow-fast system is analyzed by means of the reduced system (2) in terms of the slow variables S and I = U + V, the total amount of infected individuals,

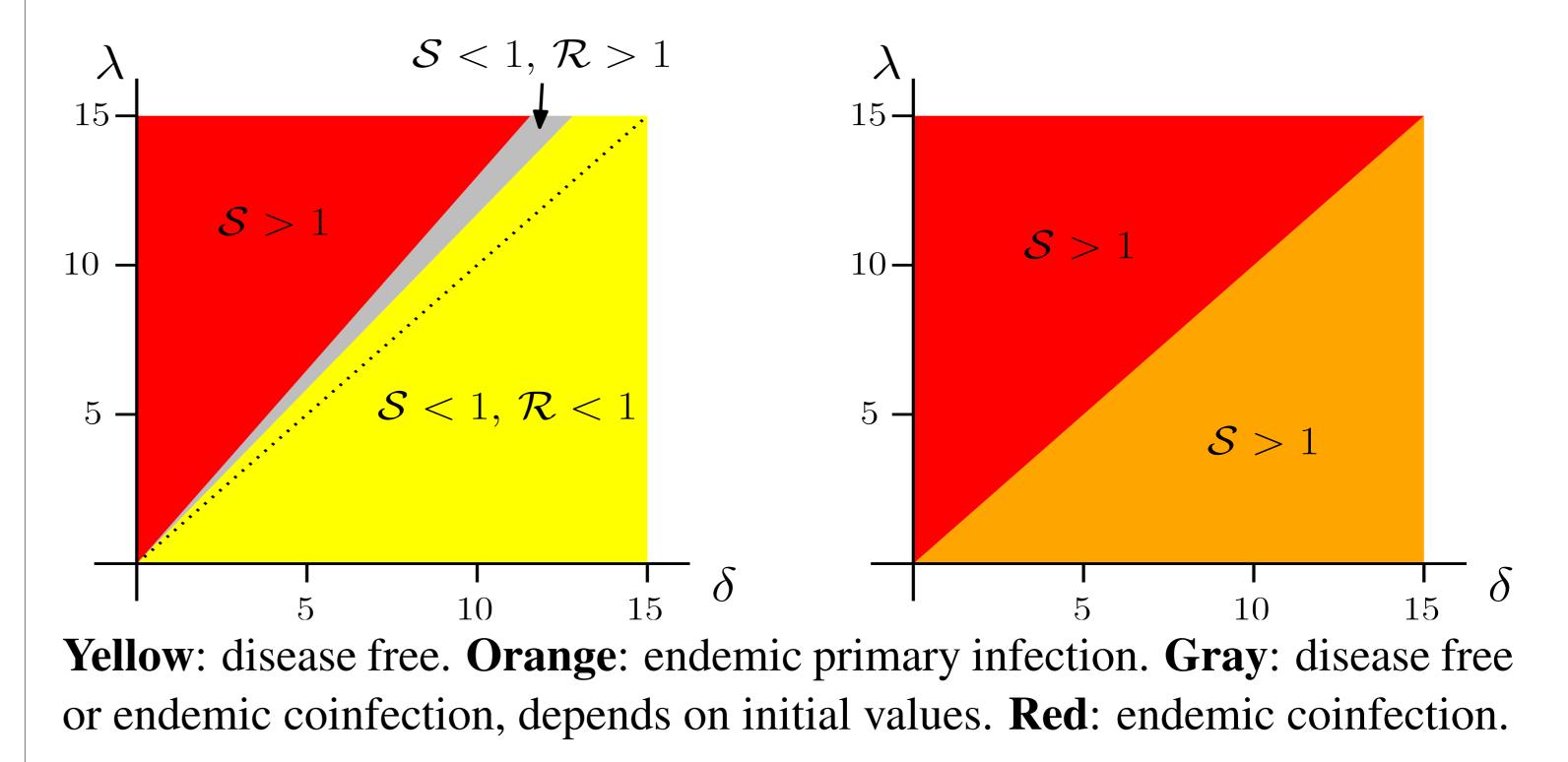
$$\begin{cases} dS/dt = (r-m)S - c_{ss}S^2 + AI - BSI, \\ dI/dt = -CI + DSI - EI^2, \end{cases}$$

where A, B, C, D, E depend on δ/λ , the secondary disease parameters. The following quantities depend also on δ/λ and help in describing the outcomes of the aggregated system

$$\mathcal{R} = \frac{E(r-m) + AD + BC}{2\sqrt{(c_{ss}E + BD)AC}} \qquad \qquad \mathcal{S} = \frac{(r-m)D}{c_{ss}C}$$

we can describe the behavior of system (1) in terms of $(x^*(y^*), y^*)$.

Epidemiological outcomes as function of δ **and** λ for two different sets of parameter values



The opportunistic disease can change the primary disease outcome since

• $S > 1 \Rightarrow$ Disease endemic: coinfection if $\delta < \lambda$

• $S < 1 \Rightarrow \begin{cases} \mathcal{R} < 1 \Rightarrow \text{Disease free.} \\ \mathcal{R} > 1 \Rightarrow \end{cases}$ Depending on initial values, disease free or endemic scenario (coinfection if $\delta < \lambda$).

Note that the opportunistic disease can not invade if $\delta \geq \lambda$.

APPLICATIONS: If there are procedures to modify the recovery and transmission rates (δ , λ) of the opportunistic disease:

• Knowing the actual values of δ and λ allows to design measures to change the epidemiological scenario.

• If each procedure has associated different economical cost, the shorter distance between regions may not be feasible or optimal.

References

[1] P. Auger, J.-C. Poggiale, E. Sánchez. (2012). A review on spatial aggregation methods involving several time scales. Ecological Complexity Vol.10, 12–25 [2] E.C. Griffiths, A.B.P. Pedersen, A. Fenton, O.P. Petchey (2011). The nature and consequences of coinfection in humans. Journal of Infection 63 (3): 200–206

MPDE'14. Torino