Competencia entre especios, interferencia entre individuos y coexistencia. ¿Qué dicen los modelos deterministas?

M. Marvá Ruiz - UDM - UAH - mayo 2023

Co-authors

- Hamlet Castillo PUCMM.
- Ezio Venturino UNITO.
- Carmen Vera UAH UDM.
- René Escalante UAH UDM.
- Víctor García UAH UDM.
- Alvaro Alonso UAH CCVV.
- Joaquín Calatayud RJCI.

< 口 > < 同

Towards the classical competition model

- x(t) the total population size at time t.
- x'(t) the variation of the total population size at time *t*.

•
$$\frac{x'(t)}{x(t)}$$
 the *per capita* growth rate.

Malthus's model [1]

The per capita growth rate is constant

$$\frac{x'(t)}{x(t)} = r \quad \Leftrightarrow \quad x'(t) = rx(t) \quad \Leftrightarrow \quad x(t) = x_0 e^{rt}, \quad x_0 = x(0), \text{ initial population size}$$

Verlhust's model [2]

The growth rate decreases linearly as the population grows until reaching the carrying capacity

$$\frac{x'(t)}{x(t)} = r\left(1 - \frac{x}{K}\right)$$

$$\Leftrightarrow x'(t) = rx(t) - r\frac{x^2(t)}{K}$$

$$\Leftrightarrow x(t) = \frac{K}{1 + (K - x_0)e^{-rt}}, \quad x_0 = x(0)$$

- *r* is the intrinsic growth rate.
- *K* is the carrying capacity.
- The $x^* = 0$ and $x^* = K$ are **equibrium states**.
- r/K is the intra-species competition coefficient.

Towards the classical competition model

Note that

$$\frac{x'(t)}{x(t)} = r\left(1 - \frac{x}{K}\right)$$

can be written as

$$\frac{x'(t)}{x(t)} = r - a_{11}x$$

where $a_{11} = \frac{r}{K}$ stands for the intra-species competition coefficient, so that

• The per capita growth rate decreases as the population growth due to intra-species competition.

M. Marvá (UAH)

Towards the classical competition model

- $x_1(t)$ the total population size of species 1 at time *t*.
- $x_2(t)$ the total population size of species 2 at time *t*.

The classical INTERFERENCE competition model (Gausse [3]

The per capita growth rate linearly decreases as:

- the population size grows until reaching the carrying capacity.
- the competitors population size grows

$$\begin{cases} \frac{x_1'(t)}{x_1(t)} = r_1 \left(1 - \frac{x_1}{K_1} \right) - b_{12}x_2 \\ \frac{x_2'(t)}{x_2(t)} = r_2 \left(1 - \frac{x_2}{K_2} \right) - b_{21}x_1 \end{cases}$$

Besides

- Logistic growth in the absence of competitors.
- *b_{ij}* competition coefficient.
- No formula for solutions. Qualitative study.

Rearranging terms

where

- r_i is the intrinsic growth rate.
- a_{ii} is the intra-species competition.
- a_{ij} effect of species j on species i: inter-species competition.

There are 4 equilibrium states:

- $E_0^* = (0,0)$ both populations extinction.
- 2 $E_1^* = (x_1^*, 0)$ species 2 extinction.
- $E_2^* = (0, x_2^*)$ species 1 extinction.

•
$$E_3^* = (x_1^*, x_2^*)$$
 species coexistence.

The classical competition model

Define

$c_{21} =$	$a_{21} r_2$
	$a_{11} r_1$

c₁₂ < 1 ⇔ species 1 can not go extinct.
c₂₁ < 1 ⇔ species 2 can not go extinct.

M. Marvá (UAH)

Interference competition

Limitations of the classical competition model:

Assumes that inter species interactions do not take time.

Time allowance

Searching, feeding, mating,...

Assumes that individuals are well mixed.

Ocexistence's Paradox: Small region in the parameters space enabling coexistence.

We next...

- ...introduce further extensions of the classical competition model.
- **2** For the sake of simplicity, only species 1 displays the new effects.

A D b 4 A b

Holling type II competitive response: competing is time consuming [4]

Time allowance

Searching, feeding,	Inter-species
mating,	competition

$$\begin{cases} x_1' = r_1 x_1 - a_{11} x_1^2 - \frac{a_{12} x_1 x_2}{1 + a_{1x_1}} \\ x_2' = r_2 x_2 - a_{22} x_2^2 - a_{21} x_1 x_2 \end{cases}$$
(1)

- a_1 : x_2 spends time in competing with x_1 .
- a_1 = resources finding rate × probability of finding a competitor × time spent competing.

Conditional coexistence in favor of sp 1

M. Marvá (UAH)

UAH - CCVV - May 2023 10/17

Searching, feeding, mating,... Inter-species competition

$$\begin{cases} x_1' = r_1 x_1 - a_{11} x_1^2 - \frac{a_{12} x_1 x_2}{1 + a_1 x_1^2} \\ x_2' = r_2 x_2 - a_{22} x_2^2 - a_{21} x_1 x_2 \end{cases}$$
(2)

- c_1 : x_2 spends time when dealing with x_1 .
- The more x_1 , the more time spends x_2 in competition.
- a_1 = resources finding rate × probability of finding a competitor × time spent competing.

Beddington-DeAngelis competitive response: intra species interference [6]

Time allowance

Searching, feeding,	Inter-species	Intra-species 2
mating,	competition	interference

- c_1 : x_2 spends time when competing with x_1 .
- \tilde{a}_2 : x_2 spends time interfering with x_2 when competing with x_1 .
- \tilde{a}_2 : species 2 conspecifics' encounter rate × intra-species 2 average interference time.

$$\begin{cases} x_1' = x_1 x_1 - a_{11} x_1^2 - \frac{a_{12} x_1 x_2}{1 + c_1 x_1} + \tilde{a}_2 (x_2 - 1) \\ x_2' = r_2 x_2 - a_{22} x_2^2 - a_{21} x_1 x_2 \end{cases}$$
(3)

Beddington-DeAngelis competitive response: intra species interference [6]

Assume $c_1 > 0$ and $\tilde{a}_2 > 0$ in (3).

$$c_{12} = \frac{a_{12}}{a_{22}} \frac{r_1}{r_2}$$

$$c_{21} = \frac{a_{21}}{a_{11}} \frac{r_2}{r_1}$$

M. Marvá (UAH)

UAH - CCVV - May 2023

< 口 > < 同

13/17

Conclusions

Taking into account inter- and intra-species interference in the competition term

- Yields new coexistence scenarios.
- Enlarges the coexistence region in the parameters space.

Next steps

• Complete the analysis of the Beddington-DeAngelis competition model.

- Compare the above models to real data.
- Translate the above ideas to discrete (difference equation) models.

THANK YOU

Marcos Marvá Ruiz marcos.marva@uah.es https://marcos-marva.web.uah.es/

A B > A B > A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

M. Marvá (UAH)

Interference competition

UAH - CCVV - May 2023 15/17

∃ ▶ ∢

э

References I

T. R. Malthus.

An Essay on the Principle of Population: Library of Economics. 1798.

P.-F. Verhulst.

Notice sur la loi que la population poursuit dans son accroissement. *Correspondance MathÃ* \hat{O} *matique et Physique*, 10:113 \hat{a} 121, 1838.

G.F. Gausse.

The struggle for existence.

Annals of the Entomological Society of America, 28(1):59–59, mar 1935.

Hamlet Castillo-Alvino and Marcos Marvá.

The competition model with holling type II competitive response to interfering time. *Journal of Biological Dynamics*, 14(1):222–244, jan 2020.

Hamlet Humberto Castillo-Alvino and Marcos Marvá.

Group defense promotes coexistence in interference competition: The holling type IV competitive response.

Mathematics and Computers in Simulation, 198:426–445, aug 2022.

16/17

< □ > < /⊒ >

V. García-Garrido M.C. Vera; M. Marvá; R. Escalante. On the beddington-deangelis competitive response. *In preparation.*

A D > <
 A P >
 A