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b Institut des Systèmes Complexes, Ecole Normale Supérieure de Lyon, 46 allée d’Italie, 69364 Lyon Cedex 7, France
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a b s t r a c t

We present a time discrete spatial host–parasitoid model. The environment is a chain of

patches connected by dispersal events. Dispersal of parasitoids is host-density dependent.

When the host density is small (resp. high), the proportion of migrant parasitoids is close to

unity (resp. to zero). We assume fast patch to patch dispersal with respect to local inter-

actions. Local host–parasitoid interactions are described by the classical Nicholson–Bailey

model. By using time scales separation methods (or aggregation methods), we obtain a

reduced model that governs the total host and parasitoid densities (obtained by addition

over all patches). The aggregated model describes the time evolution of the total number of

hosts and parasitoids of the system of patches. This global model is useful to make

predictions of emerging behaviour regarding the dynamics of the complete system. We

study the effects of number of patches and host density-dependent parasitoid dispersal on

the overall stability of the host–parasitoid system. We finally compare our stability results

with the CV2 > 1 rule.
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1. Introduction

The study of spatial dynamics of host–parasitoid associations

has received a lot of attention (see the review by Briggs and

Hoopes, 2004). Most models consider a set of spatial patches

connected by dispersal events. These models usually combine

two sub-models, one describing local host–parasitoid inter-

actions on each patch and the other describing dispersal

among patches. In early works, Hassell et al. (1991a) and

Comins et al. (1992) considered a spatial environment which is

a two-dimensional network of patches connected by dispersal.

The local dynamics was represented by the classical Nichol-

son–Bailey model which is unstable. Regarding the dispersal
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E-mail address: tri.nguyen-huu@ens-lyon.fr (T. Nguyen Huu).

1476-945X/$ – see front matter # 2007 Elsevier B.V. All rights reserve
doi:10.1016/j.ecocom.2007.07.003
sub-model, they defined host (resp. parasitoid) mobility as the

proportion of hosts (resp. parasitoids) moving from one patch

to its eight closest neighbouring patches between two time

steps. In this model, it was assumed that dispersal is

‘‘constant’’, i.e. proportions of migrants do not depend on

local host and parasitoid densities and are simply constant

parameters. Furthermore, dispersal was considered as iso-

tropic, i.e. migrant individuals were uniformly distributed on

neighbouring patches. These models were mostly developed

to study the dynamics and the persistence of the host–

parasitoid system (Adler and Nuernberger, 1994; Allen, 1975;

Reeve, 1988; Rohani et al., 1994; Rohani and Ruxton, 1999) and

the spatial structures that may emerge such as spiral waves,
d.
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Fig. 1 – The chain of patches with the migration parameters

used in the model for the hosts (top) and the parasitoids

(bottom).
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chaotic dynamics, or crystal structures, hence providing

models where the global system is persistent while the local

sub-model predicts unstability. Numerical simulations have

shown that the type of spatial structure that emerges depends

on the value of the host and parasitoid mobilities. Stability and

persistence also disappear as radius and speed of dispersal

increases (Nguyen Huu et al., 2006a).

Some other works considered host-density dependent

dispersal of parasitoids. In reality, individual organisms move

on a large range of time and space scales. At the landscape

level, hosts and parasitoids can frequently move from a

favourable patch to another one. French and Travis (2001)

suggested that parasitoids are able to disperse more than once

during the dispersal period, and can therefore ‘‘compare’’ host

densities of several patches. Our knowledge about the effect of

these repeated dispersal events between favourable patches

on the overall host–parasitoid dynamics is still limited.

Parasitoid dispersal is mainly connected to host availability.

When the density of host is high on a given patch, parasitoids

should rather remain on that patch than move to another one.

Most parasitoids and hosts are sensitive to chemical products

(pheromones) whose detectability depends on the density of

organisms that are locally present (Travis and Dytham, 1999;

Wiskerke et al., 1993). It is thus important to incorporate

density dependent dispersal of organisms into models. Rohani

and Miramontes (1995) and French and Travis (2001) showed

that density dependent dispersal of parasitoids promoted the

self-organization of spiral waves. This model therefore

showed the interplay between the type of dispersal (den-

sity-dependent or not) and the emergent spatial pattern.

Another family of models considers a set of patches with

local host–parasitoid interactions. However, in these models,

the dispersal process is not explicit. It is assumed that after

some dispersal process that is not described, hosts and

parasitoids are distributed among spatial patches according to

some given distribution (Hassell and May, 1973, 1974; Hassell

et al., 1991b). These models are mostly dedicated to studying

the effects of particular spatial host and parasitoid distribu-

tions on the stability of the host–parasitoid system, i.e. on the

existence and stability of a non-trivial positive equilibrium

point. A condition, called the ‘CV2 > 1 rule’, has been proposed

as an approximate criterion for stability (Pacala et al., 1990;

Hassell et al., 1991b; Taylor, 1993). It states that if the square of

the coefficient of variation of the parasitoid spatial distribu-

tion for each host is larger than unity, then the host–parasitoid

system should be stable. These models clearly demonstrated

the importance of the spatial distribution of host and

parasitoid individuals on the stability of a host parasitoid

system.

When some conditions on dispersal are met, persistence

and stability can be analysed through a reduced model built

using approximation methods (or aggregation methods). This

reduced model (aggregated model) allows predicting the

asymptotic behaviour of the system for fast dispersal.

Differences between the local sub-model and the aggregated

model correspond to the emergence of properties. When the

mathematical expressions of the complete and the aggregated

model are not the same, there is functional emergence. When

the dynamics of the complete and the aggregated models are

qualitatively not the same, there is dynamical emergence
(Auger et al., in press). In the case of density-independent

dispersal, aggregation methods have been used to study the

global behaviour of a model using unstable local dynamics

(Nguyen Huu et al., 2006a) and persistent local dynamics

(Nguyen Huu et al., 2006b). In both models, there was no

functional emergence as local and aggregated models are of

the same type, but there was dynamical emergence. In the

present work, we show that density-dependent dispersal

promote both functional and dynamical emergence.

In this work, we consider a chain of spatial patches

connected by a series of dispersal events. In Lett et al. (2005),

we show that when a radial symmetry condition is met, a 2D

network of patches can be perfectly aggregated into a 1D chain

of patches. For perfect aggregation, we refer to Iwasa et al.

(1987). We also refer to the case of a 1D chain (Ruxton, 1996).

Approximate aggregation methods have been presented in

Iwasa et al. (1989), see also Auger and Bravo de la Parra for time

scale separation methods (2000). Aggregation methods in

linear and discrete time models have been described in Bravo

de la Parra et al. (1999) and Auger and Bravo de la Parra (2000).

In this work, we use an extension of those methods to a

nonlinear situation, to appear in Sanz et al. (submitted),

because the present model includes a dispersal sub-model

that is not linear.

Local host–parasitoid interactions are described by the

classical Nicholson–Bailey model. The patches are assumed to

be close enough to support the assumption of frequent patch

to patch dispersal with respect to local interactions. Spatial

distributions of hosts and parasitoids are calculated explicitly

from the dispersal sub-model. In the next step, by using

aggregation methods, we obtain a global model that governs

the total host and parasitoid densities (obtained by addition

over all patches). We assume host-density dependent dis-

persal of parasitoids. When the host density is small (resp.

high), the proportion of migrant parasitoids is close to unity

(resp. to zero). We study the effects of number of patches and

density dependent dispersal on the overall stability of the

host–parasitoid system. We finally compare our stability

results with the CV2 > 1 rule and discuss emergence in this

model.
2. The model

We consider a host–parasitoid system in a spatial environ-

ment which is a chain of A patches (Fig. 1). Let ni,t and pi,t be,

respectively, the host and parasitoid density on patch i,



pi;tþ1 ¼ ½1� gðni;tÞ� pi;t þ ð1=2Þgðni�1;tÞpi�1;t þ ð1=2Þgðniþ1;tÞpiþ1;t

Fig. 2 – Distribution of a population of insects after a dispersal event composed of random walk. The insects are first located

on the central patch. For each elementary dispersal event and for each patch, a constant proportion of insects move to an

adjacent patch, leading to a diffusion-like distribution. The final distribution is shown after (a) 1, (b) 5 and (c) 10 elementary

dispersal events.
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i 2 {1, . . ., A} at each generation t. We define the population

vector as follows

Xt ¼ ðn1;t;n2;t; . . . ;nA;t; p1;t; p2;t; . . . ; pA;tÞ
T

where the upper index T denotes the transposition.

The complete model is composed of two sub-models, one

for dispersal between patches and one for host–parasitoids

interactions on each patch.

2.1. Host and parasitoid dispersal sub-model

We assume that insects can move over a distance of k patches

at each generation, in a diffusion-like dispersal process. In the

case of a pure random walk, insects starting on a patch would

be distributed according to a Gaussian distribution centred on

this particular patch after dispersal. In the present model,

hosts move according to an asymmetrical dispersal process (a

biased random walk) while parasitoids dispersal is host

density-dependent. In order to compute the distribution

obtained for hosts and parasitoids, we discretize this process

in time and decompose it into k elementary dispersal events

consisting in movements from one patch to one of its nearest

neighbours. Fig. 2 shows the effects of the number k of

elementary symmetrical dispersal events on the host spatial

distribution after a series of k symmetrical dispersal events

with hosts initially located at the central patch.

Hosts’ movements correspond to an asymmetric random

walk: probabilities to go to the left or to the right patch are not

the same. Let, f be the proportion of hosts moving from any

patch to the neighbouring patch situated on its left between

two time steps of dispersal. We define parameter a > 0 and

assume that the proportion of migrants from any patch to the

neighbouring patch on its right is af at each elementary

dispersal event. When a > 1, the proportion of hosts moving to

the right is larger than in the opposite direction. Thus, after

several elementary dispersal events, one expects to end up

with a spatial host distribution shifted towards the right hand

side of the chain. On the contrary, when a < 1, the proportion

of hosts moving to the left is larger than in the opposite

direction and one expects a spatial host distribution shifted

towards the left. To be biologically relevant, the proportion of

hosts leaving a patch to go to left and right ones must be

smaller than 1, and thus, we assume that (1 + a)f < 1.
For parasitoids we assume a host density-dependent

dispersal process. Dispersal corresponds to a random walk,

but the probability of leaving the patch (and thus the

proportion of migrants) depends on the density of hosts on

that patch. Parasitoids may use chemical stimuli from their

hosts (Vinson, 1976). Host stimuli are highly reliable but not

very detectable (Vet and Dicke, 1992). In this model, if the

parasitoid is unable to detect the presence of hosts thanks to

the pheromones left by hosts, it will leave the patch. Thus, the

density of hosts on a patch directly affects the proportion of

migrants that will stay on that patch, as this proportion is

related to the probability to find hosts pheromones which

increases with density of hosts. Let, g(ni,t) be the proportion of

parasitoids leaving any patch i to go to the two neighbouring

patches at each elementary dispersal event, which only

depends on the density of hosts on patch i at timestep t. In

this study, g(ni,t) is given by a general classical type of function

of the following form:

gðni;tÞ ¼
1

1þ tnb
i;t

(1)

where t and b are positive parameters. A similar host density

dependent dispersal process for parasitoids was used in the

case of two spatial patches in Lett et al. (2003). Here, we extend

the model to a chain of any number of patches.

Curves obtained for different values of b intersect at (n = (1/

t)1/b, g = 0.5). Fig. 3 shows function g(ni,t) for t = 1 and different

values of b. As modifying parameter corresponds to changing

scale for hosts, we will assume that t = 1 in all this study. The

main idea in Eq. (1) is that when many hosts are available on

patch i, parasitoids remain on this patch. On the contrary,

when few hosts are present there, parasitoids leave the patch.

This shift in the parasitoid behaviour (stay or leave) is all the

more ‘‘brutal’’ than b is large. We will later study the influence

of b on the model.

We assume that parasitoids leaving patch i go in equal

proportions to the two neighbouring patches. Then for any

patch 1 < i < A, the elementary dispersal process reads as

follows:

ni;tþ1 ¼ ½1� ð1þ aÞ f �ni;t þ a fni�1;t þ fniþ1;t;



Fig. 3 – The proportion g of migrant parasitoids as a

function of host density n, for t = 1 and different values of

parameter b.
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and for patches at both ends of the chain

n1;tþ1 ¼ ½1� a f �n1;t þ fn2;t;

p1;tþ1 ¼ ½1� ð1=2Þgðn1;tÞ� p1;t þ ð1=2Þgðn2;tÞ p2;t;

nA;tþ1 ¼ ½1� f �nA;t þ a fnA�1;t;

pA;tþ1 ¼ ½1� ð1=2ÞgðnA;tÞ�pA;t þ ð1=2ÞgðnA�1;tÞpA�1;t (2)

The elementary dispersal process can be therefore

described by the following system

Xtþ1 ¼ MðXtÞXt (3)

where the time unit corresponds to a single elementary dis-

persal event. M(Xt) is the following block matrix:

MðXtÞ ¼
Mh 0
0 MpðXtÞ

� �
(4)

Mh is a A � A matrix for host dispersal and MpðNtÞa matrix for

parasitoid dispersal:

Mh ¼

1� a f f 0 � � � � � � 0

a f 1� ð1þ aÞ f f } } ..
.

0 } } } } ..
.

..

.
} } } } 0

..

.
} } a f 1� ð1þ aÞ f f

0 � � � � � � 0 a f 1� f

0
BBBBBBBBBB@

1
CCCCCCCCCCA

(5)

MpðXtÞ ¼

1� ð1=2Þgðn1;tÞ ð1=2Þgðn2;tÞ 0 � � �

ð1=2Þgðn1;tÞ 1� gðn2;tÞ ð1=2Þgðn3;tÞ }

0 } } }

..

.
} } }

..

.
} ð1=2ÞgðnA�2;tÞ 1� gðnA�1;t

0 � � � � � � 0

0
BBBBBBBBBB@
The full dispersal sub-model is given by the elementary

dispersal process composed k times. For simplicity in notation,

it is written as follows:

Xtþ1 ¼ Mðk;XtÞXt (7)

The whole dispersal process is a slow process, thus one

step corresponds to one time step at slow time scale. For each

generation, k elementary dispersal events occur. In Eq. (7), the

index k means that the elementary dispersal process is

repeated k times, i.e. M(k, Xt) is recursively defined by: M(1,

Xt) = M(Xt) and for k > 1,

Mðk;XtÞ ¼ MðMðk� 1;XtÞXtÞMðk� 1;XtÞ: (8)

2.2. Host–parasitoid interactions sub-model

On each patch i of the chain, we assume that hosts and

parasitoids interact according to the Nicholson–Bailey model

ni;tþ1 ¼ lini;t e�ai pi;t ¼ hiðni;t; pi;tÞ;
pi;tþ1 ¼ cini;tð1� e�ai pi;t Þ ¼ kiðni;t; pi;tÞ (9)

where li is the host growth rate on patch i, ai the searching

efficiency of parasitoids and ci the average number of viable

parasitoids that emerge from an host parasitized at the pre-

vious generation.

We define a map S : R2A!R2A as follows:

S ¼ ðh1;h2; . . . ;hA; k1; k2; . . . ; kAÞT (10)

in which functions hi and ki, i 2 [1, . . ., A], are defined by Eq. (9)

and describe the local host–parasitoid interactions.

2.3. The complete model

The complete model combines the two previous sub-models

as follows:

Xtþ1 ¼ SðMðk;XtÞXtÞ (11)

We consider the slow time scale for this model: one time

step corresponds to a single event of reproduction, and thus

one generation. Therefore, it is assumed that between time t

and t + 1 hosts and parasitoids first explore the environment

by performing k elementary dispersal events before settling

down, then they enter a phase where they have local

demographic and parasitism interactions. Local interactions

occur at the same time on every patch. Thus, all patches are
� � � 0

} ..
.

} ..
.

} 0

Þ } ð1=2ÞgðnA;tÞ
ð1=2ÞgðnA�1;tÞ 1� ð1=2ÞgðnA;tÞ

1
CCCCCCCCCCA

(6)
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synchronized. As previously stated, the model can then be

seen as coupling a diffusion model (close to continuous

diffusion) with regular demography events.

2.4. The aggregated model

When parameter k becomes large, the elementary dispersal

process is repeated a large number of times with respect to

local interactions (which occur only once per generation). In

this case, the dispersal process is ‘‘fast’’ in comparison to local

interactions. It is then possible to build up a reduced model,

also called aggregated model (see Appendix A). This aggre-

gated model governs the total host and parasitoid densities:

nt ¼
XA

i¼1

ni;t and pt ¼
XA

i¼1

pi;t (12)

To obtain the aggregated model, one has to study first the

fast dispersal process and to look for the existence of a fast

stable equilibrium. First, one can note that dispersal is

conservative, i.e. total host and parasitoid densities remain

constant during dispersal. Indeed, individuals leaving a patch

go to another patch, making the global balance equal to zero

along the chain. In other words, total densities n and p are

invariant at the fast time scale. In Appendix A, for each value

of the ‘‘constant’’ n at the fast time scale, we obtain the

coordinates, n�i , of the unique host fast equilibrium point,

which is stable. Also, for each pair of values of the ‘‘constant’’ n

and p at the fast time scale, we obtain the coordinates, p�i , of a

unique parasitoid fast equilibrium point.

n�i ¼ n�i n; p�i ¼ m�i ðn�nÞp (13)

where n� ¼ n�1; . . . ; n�A
� �

. The host fast equilibrium depends

linearly on total host density and the parasitoids patch

proportions at the fast equilibrium depend on total host

density. The proportion of hosts on patch i at the fast equili-

brium are

n�i ¼
1� a

1� aA
ai�1 (14)

and the proportion of parasitoids are

m�i ðn�nÞ ¼
1þ ðn�i nÞb

Aþ
PA

j¼1ðn�jnÞ
b

(15)

According to expression (15), if the proportion of hosts is

high on patch i, the proportion of parasitoids on this patch will

also be large. In other words, the parasitoids are spatially

distributed like the hosts. Parameter b makes this effect more

or less important. If b is large, the parasitoids will be mostly

found on the few patches having larger host densities. The

parasitoid distribution also depends on total host density n:

when it is low, parasitoids tend to distribute uniformly among

the patches (m�i ! 1=A when n! 0), whereas when it is high

they tend to distribute according to the host distribution

(m�i / n�
b

i ). When b = 1, expression (15) is similar to the

distribution proposed by Comins and Hassell (1979), which

was based on the optimal foraging theory.
When parameter k is large, we assume that dispersal

dynamics is fast in comparison with local interactions. Then,

we can make an approximation by assuming that at any

generation t, the system reaches the fast equilibrium (14) and

(15) corresponding to the equilibrium of the dispersal sub-

model. We then replace values of densities of hosts and

parasitoids after dispersal by values at fast equilibrium. Thus,

adding host and parasitoid densities of model (9) and substitut-

ing the fast equilibrium Eqs. (14) and (15) leads to a reduced

model governing the total host and parasitoid densities:

ntþ1 ¼ nt

XA

i¼1

lin
�
i e�aim

�
i
ðn�ntÞpt ;

ptþ1 ¼ nt

XA

i¼1

cin
�
i ð1� e�aim

�
i
ðn�ntÞpt Þ (16)

Model (16) is obtained from model (9) by making an approx-

imation that is valid when k is large enough. In Appendix A, we

show that when k is becoming large, k� 1, the aggregated

model can be used to study the asymptotic behaviour of the

complete model.

Setting pt = 1 in the second Eq. (16) shows that, from one

generation to the next, parasitoids emerging from a single

individual emerge from a series of patches belonging to the

spatial equilibrium distribution:

nt

XA

i¼1

cin
�
i ð1� e�aim

�
i
ðn�ntÞÞ (17)

This equation means that parasitoids emerging at the next

generation from a single parasitoid come from different

patches which were visited during the dispersal process by

this insect at the previous generation according to the fast

equilibrium distribution.
3. Results

In this section, we summarize the analytical results obtained

in Appendices A and B regarding aggregation, existence and

stability of the fixed points.

Moreover, we illustrate our results with two examples of

systems with different asymptotic behaviour. We present sys-

tems with an aggregated model dynamics tending to an equili-

briumpoint, thentendingtoanattractingclosedinvariantcurve.

The origin is a trivial fixed point of model (16) and it is

asymptotically stable if, and only if
PA

i¼1 liai < 1. Under certain

conditions (see Appendix B) the points (n,0) (for certain values

of n > 0) are semi-trivial fixed points of model (16). These

points are unstable.

In Appendix B, we show the existence of at least a positive

fixed point (n*, p*) which verifies Eq. (16) when li = l, ci = c and

ai = a for i = 1, . . ., A. In more general cases, existence and

uniqueness of a non-trivial positive equilibrium has to be

found numerically solving:

1 ¼
XA

i¼1

lin
�
i e�aim

�
i
ðv�n�Þ p� ; p� ¼ n�

XA

i¼1

cin
�
i ð1� e�aim

�
i
ðv�n�Þ p� Þ (18)



Fig. 4 – Distance between equilibrium for the complete

model and equilibrium for the aggregated model for

different values of k. For k I 9, this distance is lower than

5% of jj(n*;p*)jj, where jj.jj is Euclidian norm.
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Thanks to the results in Appendix A, the existence of a fixed

point to the aggregated system (16) implies the existence of a

fixed point for the general system (11) for large enough values

of k. The local stability of the positive equilibrium (n*, p*) of

Eq. (16) must be determined numerically by calculating the

trace and the determinant of its Jacobian matrix. Moreover, let

(n*, p*) be hyperbolic. If it is an asymptotically stable (resp.

unstable) equilibrium of the aggregated system (16), then

X* = E(n*, p*) is an asymptotically stable (resp. unstable) equili-

brium of the complete model (11).

3.1. Aggregated model with an equilibrium point

Numerical simulations were run in order to illustrate

theoretical results. We use a chain of A = 5 patches, with

the set of parameters a = 2.3, b = 4, f = 0.2, li = 2, ai = 0.5 and

ci = 1, i 2 {1, . . ., A}. The trajectories of the aggregated model

tend toward an equilibrium point of coordinates (n*,

p*) = (7.666, 3.833), which is stable. For low values of k

(k � 2), the behaviour of the complete model differs from

the behaviour of the aggregated model. For k = 1, the system is

unstable, and the parasitoid population eventually goes

extinct (observe that this is not the case in which the semi-

trivial fixed points are unstable, because
PA

i¼1 liai 6¼ 1). For

k = 2, the system is not unstable anymore, but the trajectory of

the complete model asymptotically seems to tend to a chaotic

attractor. For larger values of k (k > 2), the complete model has

an equilibrium point like the aggregated one, but their values

differ from the equilibrium (Ruxton (1996) obtained a similar

result). We reported in Table 1 the value of the equilibrium

obtained for the complete model using different values of the

number of dispersal events k. Results show that when k

increases, the equilibrium point of the complete model tends

to the one of the aggregated model. Fig. 4 shows the distance

between equilibriums for the complete and the aggregated

models using different values of k. For k > 8, relative error is

less than 5%. The trajectories of the aggregated model and the

complete model are shown in Fig. 5 for different values of k.

3.2. Aggregated model with an attractor

With the set of parameters A = 5, a = 2.3, b = 3, f = 0.2, li = 1.5,

ai = 0.5 and ci = 1, i 2 {1, . . ., A}, the trajectory of the aggregated
Table 1 – Coordinates of the equilibrium of the complete
model for different values of dispersal frequency k

k n p

3 13.359 6.679

5 11.177 5.588

6 9.663 4.831

7 8.816 4.408

8 8.352 4.176

9 8.070 4.035

10 7.887 3.943

25 7.432 3.716

30 7.445 3.722

40 7.483 3.741

50 7.5204 3.7602

500 7.666 3.833
model tends to an attracting closed invariant curve shown in

Fig. 6. For k = 1, the dynamics of the complete model seem to be

chaotic, but for k 	 2, it tends toward an equilibrium point. For

k 	 17, it tends toward an attracting invariant curve which

becomes closer to the attractor of the aggregated model as k

increases. Those dynamics are represented of Fig. 6. Unfortu-

nately, theoretical results relating attracting closed invariant

curves for both the general and the aggregated system are not

yet available.

3.3. Effects of the number of patches on the system
stability

Fig. 7 presents the local stability regions in black of a positive

fixed point of model (16) as a function of parameters a and b for

different number of patches in the chain. The white area

corresponds to non-stable regions in the sense that the

stability condition is not verified. Two symmetrical areas are

found. The upper one corresponds to a value of parameter

a > 1, i.e. a spatial distribution of hosts shifted to the right

hand side of the chain of patches. The lower stability area

corresponds to the same spatial distribution of hosts but

shifted to the left. When the number of patches increases, the

stability area increases in size. This is rather a general result in

ecological dynamics that the persistence of a system is

favoured when its size is large. It is interesting to note that

there is a critical value for parameter b in order to obtain

stability. For a two-patch chain, this critical value is about 3,

for 3 patches, it is about 2 and for 5 patches about 1.5. When

few patches are available, parasitoids should go therefore to

the most favourable patches (those where the hosts are) to

ensure global stability. When the number of patches

increases, parasitoids still have to be spatially distributed by

choosing patches where hosts are abundant, but smaller

values of b are required, i.e. parasitoids can have less

sensitivity to detect host abundance.

3.4. Effects of the ‘‘ac’’ product on stability

The domains of stability of the fixed point of the aggregated

model in terms of parameters a and b are shown for a chain of



Fig. 5 – (a) Trajectory of the aggregated model. (b, c and d) Trajectory of the complete models with the set of parameters A = 5,

a = 2.3, b = 4, f = 0.2, li = 2, ai = 0.5 and ci = 1, i 2 [1, . . ., A] for different values of k. Trajectories of the complete model are

represented in grey, and the black circle represents the equilibrium found with the aggregated model.(b) For k = 2, the

dynamics of the complete model is chaotic. (c) For k = 4, host and parasitoid populations tends toward an equilibrium point

which is not the equilibrium point found in the aggregated model. (d) For k = 50, the equilibrium point of the complete

model is nearer to the one of the aggregated model.

Fig. 6 – Trajectories of the complete (grey) and aggregated (black) models with the set of parameters a = 2.3, b = 3, f = 0.2, 1.5,

ai = 0.5 and ci = 1, i 2 {1, . . ., A} for different values of k. A part of transient dynamics has not been represented. (a) For k = 15,

the attractor of the complete model is an equilibrium point. (b) For k = 20, the attractor of the complete model is of the same

type as the attractor of the aggregated model. (c) For k = 50, the attractor of the complete model almost matches the one of

the aggregated model.
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Fig. 7 – Domain of stability (in black) of the positive fixed point of the aggregated model for different values of parasitoid

aggregation parameter b and host migration asymmetry parameter a for a chain with (a) A = 2 patches, (b) A = 3 and (c) A = 5.

Parameter values: li = 3, ai = 0.05 and ci = 1, i 2 {1, . . ., A}.
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A = 5 patches, with li = 2 and aici = 0.05 (Fig. 8a), 0.5 (Fig. 8b), or 1

(Fig. 8c), i 2 [1, . . ., A]. This figure shows that an increase of ac

product, i.e., of either the parasitoid searching efficiency a or

the number of parasitoids emerging from one parasitized host

c, leads to a decrease of the domain of stability. Higher values
Fig. 8 – Domain of stability (in black) and of persistence (in grey

different values of parasitoid aggregation parameter b and host

patches, li = 2 and (a) aici = 0.05, (b) aici = 0.5 and (c) aici = 1, i 2 {1
of one or the other parameter correspond to parasitoid

populations that are more efficient in killing hosts, and

therefore more likely to lead to unstable interactions. The fact

that an increase in one parameter can be counter-balanced by

a similar decrease in the other parameter (i.e., only the value of
) of the positive fixed point of the aggregated model for

migration asymmetry parameter a for a chain with A = 5

, . . ., A}.



Fig. 9 – Domain of stability of the positive fixed point of the aggregated model using (a) the usual stability condition and (b)

the CV2 > 1 rule. Parameter values: A = 5 patches, l1–5 = 1.1, a1–5 = 0.05 and c1–5 = 1.
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the ac product counts) only comes true when all patches are

identical.

Domains of persistence also have been represented in grey

in Fig. 8. They are qualitatively the same than stability

domains; domains of persistence are however larger than the

corresponding stability domains. Increasing product ac also

leads to enlarging domains of non-persistent interactions.

3.5. Comparison with the CV2 > 1 rule

Using the aggregated model (17), it is assumed that at any

generation, the spatial fast dispersal equilibrium is achieved.

This spatial equilibrium distribution is represented by host

and parasitoid patch frequencies given by Eqs. (15) and (16).

Models using global dispersal (Hassell and May, 1973, 1974;

Hassell et al., 1991b) are based on similar assumptions. For

these models, stability is linked to heterogeneity, and more

precisely to the frequency distribution of parasitoid density

between patches (Pacala et al., 1990). The ‘CV2 > 1 rule’, where

CV is the coefficient of variation of parasitoid density in the

vicinity of each host, has been shown to be an approximate

criterion for stability (Pacala et al., 1990; Hassell et al., 1991b;

Taylor, 1993). This criterion states that interactions are stable

if CV2 is greater than unity. For more details on the calculation

of CV, we refer to Hassell (2000). In our case, it can be shown

that the CV2 > 1 condition is equivalent to inequality (19) (see

Appendix C for details):

XA

i¼1

n�i ½m�i ðn�Þ�
2 >2

XA

i¼1

n�i m
�
i ðn�Þ

" #2

(19)

Fig. 9 shows the stability area with respect to parameters a and

b for l = 1.1 using the usual stability condition based on the

calculation of the trace and the determinant of the Jacobian

Matrix (Fig. 9a) or the approximate CV2 > 1 condition (19)

(Fig. 9b). This result shows that the CV2 > 1 rule works well

for spatially homogeneous conditions and low values of host

growth rates, but it does not otherwise.

3.6. Effect of the host growth rate on stability

Figs. 7c, 8a and 9a can be compared as they only differ in the

value of host growth rate, with li = 1.1, li = 2 and li = 3,
i 2 {1, . . ., A}, respectively. This comparison shows that an

increase in the host growth rate promotes stability, which

confirms previous results obtained on two patches (see Fig. 8

in Lett et al., 2003). When the dispersal of parasitoids was

considered as independent of host density, the opposite result

was obtained (see Fig. 3 in Lett et al., 2003, for two patches; this

result holds for a higher number of patches). However, in this

situation we also observed that for small host growth rates

stability was obtained when hosts and parasitoids migrated

mainly to different patches, whereas for high host growth

rates, they had to go to the same patch. Here, because of the

host-density dependent dispersal of parasitoids, we ‘‘force’’

parasitoids to go where hosts go. So both results actually

suggest that an increase in host growth rate promotes stability

in situations where hosts and parasitoids aggregate on the

same patches.
4. Discussion

In this work, we have limited our study to a chain of patches.

This is not too restrictive because under some conditions, a

two-dimensional network of patches can be represented by a

reduced model corresponding to a one-dimensional chain of

patches. In order to perform such a reduction, some symmetry

conditions must hold, see the case of a two-dimensional

network of patches with radial symmetrical dispersal from a

central patch to external patches in an appendix of Lett et al.

(2005). However, in most cases, a two-dimensional network

cannot be reduced to a one-dimensional chain of patches.

Thus, to be more general and realistic, it would be needed to

study the case of a two-dimensional network of patches.

This model can be seen as a discrete version of a reaction-

diffusion model with a parasitoid diffusion coefficient

depending on the host population density. Such a model

has been developed in the continuous case (see Section 9.3 in

Murray, 1993). An increase of the time scale factor k of the

diffusion process in our model would have the same effect

than an increase of the diffusion coefficient in a continuous

time model. In our model, the parameter k can also be

associated to the radius of the distribution after dispersal: k is

the maximum number of patches an individual can go

through during one generation. If all insects start on one

patch, they all can be found within a distance of k patches
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from the starting patch. This allows the model to be more

flexible than models considering only dispersal on the nearest

neighbours: patch size can be chosen arbitrarily small

compared to the distance insects can travel in one generation,

thus it would not be relevant to prevent individuals for moving

farther. Furthermore, multiple host density-dependent ele-

mentary dispersal events allow parasitoid to leave the patch if

no hosts are present, preventing the unrealistic situation

where parasitoids would stay on an empty patch. In addition,

this dispersal model is less extreme than the ideal free

distribution, which does not describe the intrinsic process of

dispersal, allowing individuals to reach any patch in the

environment, regardless of their mobility.

The simplicity of our description comes from the fact that we

assume the decomposition of the dispersal process in k

elementary dispersal events. This allows ending up with some

constant host and parasitoid distributions so that a simple

global model governing the total host and parasitoid densities

can be derived. The advantage of this method is to calculate

explicitly thehostand parasitoid spatial distributions as thefast

equilibrium from the dispersal model instead of using spatial

distributions that are given a priori. Our study allows obtaining

an aggregated model that governs the total host and parasitoid

densities. This model has only two variables, which are global

densities for hosts and parasitoids, and is much more tractable

than the complete model. In the most favourable cases it could

be analysed analytically. Otherwise, as in this work, the

existence of a non-trivial positive equilibrium for the aggre-

gated model can be proved and stability conditions for the

reduced model can be checked numerically. The stability

condition for the complete model would be much more difficult

to obtain for a chain with a large number of patches. Stability

conditions of the aggregated model can be compared to other

stability criteria that were already proposed, like the CV2 > 1

rule. This rule is known to work better when the host growth

rate is small (Hassell et al., 1991b; Taylor, 1993). The advantage

of the local stability condition is that it is valid for any value of

the parameter set. Our work was able to confirm that the

CV2 > 1 rule and local stability condition predict similar stability

areas, the agreement between the two methods becoming

better when the host growth rate gets smaller.

The expression of the aggregated model (18) differs from

the Nicholson–Bailey model given in the local model (9), thus

there is always a functional emergence in this system.

Furthermore, the aggregated model provides three types of

asymptotic behaviour: unstability, asymptotically stable equi-

librium or trajectories tending towards an attracting closed

invariant curve. Fig. 8 shows the corresponding domains for

some sets of parameters. The local Nicholson–Bailey sub-

model always provides unstability, thus in grey and black

domains (Figs. 7 and 8), there is a dynamical emergence.

Hence, density-dependent dispersal promotes emergence,

which makes the aggregated model a useful tool to analyse

the global dynamics of the system.

In the future, we would like to consider the case of a two-

dimensional network of patches connected by density depen-

dent dispersal at a fast time scale. In that case too, aggregation

methods would allow building a reduced global model which

could be useful to make suitable predictions about the

emergence of global dynamics of the complete system.
Appendix A

In this appendix, we are proving that the complete model

can be reduce into an aggregated model that will be used to

study its asymptotic behaviour.

First of all, let us summarize the results concerning the

reduction of this kind of systems that are proved in Sanz et al.

(submitted). The model evolves in discrete time and is driven

by two processes with different time scales: slow and fast.

Such processes are defined respectively by two mappings

S; F : VN!VN; S; F2C1

where VN
RN is a non-empty open set. The time step of the

model corresponds to the slow dynamics. The effect of the fast

process over this time interval, which is much larger than its

own, it is assumed to act k times before the slow process acts.

So, denoting by Xk;t 2RN the vector of state variables at time t,

the complete system is defined by

Xk;tþ1 ¼ SðFkðXk;tÞÞ (A1)

where Fk denotes the k-fold composition of F with itself.

In order to reduce the system (A1), we have to impose some

conditions on the fast process, which are specified in the

following hypothesis:

Hypothesis 1. For each initial condition X 2 VN, the fast

dynamics tends to an equilibrium. That is, there exists a

mapping F̄ : VN!VN such that for all X 2 VN

lim
k!1

FkðXÞ ¼ F̄ðXÞ:

Moreover, there exist a non-empty and open set Vq 
Rq

with q < N, and two mappings G:VN! Vq and E:Vq! VN such

that F̄ can be expressed as

F̄ ¼ E�G

where G represents the so-called global variables and E the

equilibrium reached by the fast dynamics for the correspond-

ing value of the global variables.

Assuming Hypothesis 1, one can associate to the complete

system (A1) the following reduced or aggregated system:

Ynþ1 ¼ G�S�EðYnÞ (A2)

where Yn := G(Xn). Observe that the system (A1) evolves in RN
þ

whereas its aggregated counterpart (A2) evolves in R
q
þ, where q

can be much smaller than N. The following theorem states

when and how one can use the aggregated system to study the

asymptotic behaviour of the complete system.

Theorem 1. Let us assume that F̄2C1ðVN; VNÞ and that

limk!1 FkðXÞ ¼ F̄ðXÞ and limk!1 DFkðXÞ ¼ DF̄ðXÞ uniformly

on any compact set K 
 VN. Let Y� 2Rq be a hyperbolic fixed

point of (A2) which is asymptotically stable (resp. unstable).

Then there exists k0 2N such that for each k I k0, k2N, there

exists a hyperbolic fixed point X�k of (A1) which is asymptoti-
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cally stable (resp. unstable) and that satisfies limk!1 X�k ¼
S�EðY�Þ. Moreover, let X0 2 VN, if the solution Yt of (A2) corre-

sponding to the initial condition Y0 = G(X0) is such that

limt!1 Yt ¼ Y� then, for each k I k0, k2N, the solution Xk,t

of (A1) corresponding to X0 verifies limt!1 Xk;t ¼ X�k.

The theorem states that, under certain conditions, one can

approximate the hyperbolic fixed points of the complete

system, as well as their basins of attraction in case they are

stable, by performing their study in the aggregated system.

Though it is not stated in the theorem, the results are also valid

for hyperbolic periodic solutions (see Sanz et al., submitted).

The remainder of this appendix is devoted to show that

model (11) matches with the assumptions of Theorem 1. Let us

denote V2A ¼ R2A
þ and V2 ¼ R2

þ. Let N = (n1, . . ., nA)T and

P = ( p1, . . ., pA)T be the population vectors of hosts and

parasitoids, respectively. Let also n ¼
PA

i¼1 ni and p ¼
PA

i¼1 pi

stand for the total number of hosts and parasitoids which will

play the role of global variables and therefore will be the state

variables for the aggregated system. Finally, we denote the

population vectors for the complete and the aggregated

system X ¼ ðN;PÞT 2R2A and Y ¼ ðn; pÞT 2R2.

Functions F and S of system (A1) for model (11) are those

defined by Eqs. (3) and (10) as follows:

FðXÞ ¼ MðNÞX or; in terms ofN and

P; FðN; PÞ ¼ ðMhN;MpðNÞPÞ;
SðXÞ ¼ ðh1ðn1; p1Þ; . . . ;hAðnA; pAÞ; k1ðn1; p1Þ; . . . ; kAðnA; pAÞÞ

T

We will refer in the sequel to the norm jj.jj1 in Rm

corresponding to the sum of the absolute values of the

components of the vector.

From their definitions, it is obvious that S, F 2 C1 (V2A;V2A).

To start checking Hypothesis 1, we need to calculate

limk!1 FkðXÞ. The expression of Fk(X) is easily written in

terms of N and P:

FkðN; PÞ ¼ Mk
hN;

Yk

j¼1

MpðMk� j
h NÞP

0
@

1
A

and thus, we need to calculate the limit of two sequences of

matrices

lim
k!1

Mk
h and lim

k!1

Yk

j¼1

MpðMk� j
h NÞ

As Mh is a regular stochastic matrix, calling n* its unique

positive eigenvector associated to eigenvalue 1 with jjn*jj1 = 1,

it is well known that

lim
k!þ1

Mk
h ¼ ðn�j � � � jn�Þ ¼: M̄h (A3)

Straightforward calculations lead to

n� ¼ 1� a

1� aA
; . . . ;

1� a

1� aA
ai�1; . . . ;

1� a

1� aA
aA�1

� �
:

For the limit limk!1
Qk

j¼0MpðMk� j
h ðNÞÞ, let us observe that

we have the product of the elements of a convergent sequence

of stochastic matrices, namely fMpðMk
hNÞgk2N

, which limit is

limk!þ1MpðMk
hNÞ¼Mpðlimk!þ1Mk

hNÞ¼MpðM̄hNÞ¼Mpðn�nÞ
As Mp(n*n) is a regular stochastic matrix and each matrix

MpðMk
hNÞ is column-allowable (i.e., it has, at least, one positive

entry in each column), following the proof of Proposition 3.1 in

Blasco et al. (2001), which is based on the results in page 96 of

Seneta (1981), we obtain that

lim
k!1

Yk

j¼1

MpðMk� j
h NÞ ¼ ðm�ðn�nÞj � � � jm�ðn�nÞÞ ¼: M̄pðn�nÞ

where m*(n*n) stands for the unique positive eigenvector of

matrix M*(n*n) associated to eigenvalue 1 with jjm*(n*n)jj1 = 1.

Straightforward calculations give us the following explicit

expression for m*(n*n)

m�ðn�nÞ ¼ 1þ n�
b

1

Aþ
PA

j¼1 n�
b

j

; . . . ;
1þ n�

b

A

Aþ
PA

j¼1 n�
b

j

0
@

1
A:

where n�i ¼ 1�a
1�aA ai�1n.

Then, we have

F̄ðXÞ ¼ lim
k!1

FkðXÞ ¼ ðM̄hN; M̄pðn�nÞPÞ ¼ ðn�n;m�ðn�nÞpÞ ¼ E�GðXÞ

where G:V2A! V2 is G(X) = G(N, P) = (n, p), n and p being the

global variables, and E:V2! V2A is E(n, p) = (n*n,m*(n*n)p), which

gives the equilibrium of fast dynamics for the particular values

n and p of the global variables.

And finally the corresponding aggregated system reads as

follows

ðntþ1; ptþ1Þ ¼ Ytþ1 ¼ G�S�EðYtÞ ¼ G�S�Eðnt; ptÞ

that is

ntþ1 ¼ nt

XA

i¼1

lin
�
i e�aim

�
i
ðn�ntÞpt ; ptþ1 ¼ nt

XA

i¼1

cin
�
i ð1� e�aim

�
i
ðn�ntÞpt Þ

which agrees with Eq. (16).

Following the proof of Theorem 4.3 in Blasco et al. (2001)

together with standard compactness arguments assure the

uniform convergence on any compact set K 
 V2A of

limk!1 FkðXÞ ¼ F̄ðXÞ and limk!1 DFkðXÞ ¼ DF̄ðXÞ, what allows

applying Theorem 1 and so studying the stability of equilibria

of system (11) through the same study for system (16).
Appendix B

B.1. Existence of fixed points

The fixed points to Eq. (16) are the solutions to equation

n ¼ n
XA

i¼1

lin
�
i e�aim

�
i
ðn�nÞp; p ¼ n

XA

i¼1

cin
�
i ð1� e�aim

�
i
ðn�nÞpÞ

On one hand, we have the trivial fixed point (n, p) = (0,0) and,

whenever
PA

i¼1 liv
�
i ¼ 1, the semi-trivial fixed points of the

form (n, p) = (n*,0) with n* > 0.

On the other hand, in the particular case in which li = l,

ci = c and ai = a for i = 1, . . ., A, direct calculations lead to the

existence of a fixed point (n, p) where n is a solution to the
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equation
PA

i¼1 n�i e�am�
i
ðn�nÞnð1�ð1=lÞÞ ¼ ð1=lÞ and p is p = nc(�(1/l)).

It should be pointed out that in this case it is needed that l > 1.

The number of fixed points equals the number of solutions to

equation
PA

i¼1 n�i e�am�
i
ðn�nÞnð1�ð1=lÞÞ ¼ ð1=lÞ.

In the general case, existence of a non-trivial positive

equilibrium has to be checked numerically.
B.2. Stability of the fixed points

Regarding stability questions, let us consider the function

Hðn; pÞ ¼ n
XA

i¼1

lin
�
i e�aim

�
i
ðn�nÞp; n

XA

i¼1

cin
�
i ð1� e�aim

�
i
ðn�nÞpÞ

 !

The Jacobian matrix reads as
JHðn; pÞ ¼

XA

i¼1

lin
�
i e�aim

�
i
ðn�nÞ p � n

XA

i¼1

lin
�
i aiðm�i ðn�nÞÞ

0 p e�aim
�
i
ðn�nÞp �n

XA

i¼1

liain
�
i m
�
i ðn�nÞ e�aim

�
i
ðn�nÞp

XA

i¼1

cin
�
i ð1� e�aim

�
i
ðn�nÞpÞ þ n

XA

i¼1

cin
�
i aiðm�i ðn�nÞÞ

0 p e�aim
�
i
ðn�nÞp n

XA

i¼1

ciain
�
i m
�
i ðn�nÞð1� e�aim

�
i
ðn�nÞpÞ

0
BBBB@

1
CCCCA
It is well known that a fixed point (n, p) is asymptotically

stable if, and only if,

trðJHðn; pÞÞ< 1þ detðJHðn; pÞÞ< 2

Applying this condition, we get that the trivial fixed point

(n, p) = (0, 0) is asymptotically stable if, and only if
PA

i¼1 lin
�
i <1,

and the semi-trivial fixed points (n, p) = (n, 0) with n > 0 are not

asymptotically stable.

Regarding the stability of possible positive non-trivial

fixed points, we were unable to achieve a simple condition

based on tr(JH(n, p)) and det(JH(n, p)) even in the particular case

in which li = l, ci = c and ai = a for i = 1, . . ., A. Therefore, in the

general case the stability conditions must be numerically

checked.
Appendix C

In this appendix, we detail the calculation of the condition

‘CV2 > 1’. In the aggregated model, the number of hosts and

parasitoids after dispersal are respectively ni
�Nt and m�i Pt for

patch i, for i 2 {1, 2, . . ., A}, where Nt and Pt represent the total

density of hosts and parasitoids at time step t. This means that

for each of the ni
�Nt hosts on patch i, there are mi

�Pt parasitoids

in its vicinity. In order to calculate the coefficient of variation

CV of the number of parasitoids in the vicinity of each host, we

first calculate the mean m and variance n.

m ¼ 1
Nt

XA

i¼1

n�i Ntmi
�Pt ¼

XA

i¼1

n�i m
�
i Pt

and

v ¼ 1
Nt

XA

i¼1

ni
�Ntðm�i PtÞ2 �m2 ¼

XA

i¼1

n�i ðm�i PtÞ2 �m2
We now calculate CV2:

CV2 ¼ v
m2
¼ 1

m2

XA

i¼1

n�i m
�2
i � 1

The condition ‘CV2 > 1’ can then be writtenPA
i¼1 ni

�mi
�2 >2

PA
i¼1 n�i m

�
i

� �2
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