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Mathematics, Faculty of Sciences, University of Tlemcen, Tlemcen, Algeria; cUR UMMISCO, IRD

France Nord, F-93143 Bondy, France; dUPMC Univ Paris 06, UMI 209, UMMISCO, F-75005
Paris, France

(Received 9 January 2012; final version received 24 June 2012)

In this paper we deal with a nonlinear two-timescale discrete population model that
couples age-structured demography with individual competition for resources.
Individuals are divided into juvenile and adult classes, and demography is described
by means of a density-dependent Leslie matrix. Adults compete to access resources;
every time two adults meet, they choose either being aggressive (hawk) or non-
aggressive (dove) to get the best pay-off. Individual encounters occur much more
frequently than demographic events, what yields that the model takes the form of a two-
timescale system. Approximate aggregation methods allow us to reduce the system
while preserving at the same time crucial asymptotic information for the whole
population. In this way, we are able to describe the total population size as function of
individual aggressiveness level and environmental richness. Model analysis shows a
general trend with species that look for richer environment having smaller proportions
of hawk individuals with larger costs.

Keywords: game dynamics; Leslie model; aggregation methods; individual behaviour;
aggressiveness

1. Introduction

An important goal of population dynamics is taking into account the behavioural tactics that

individuals may adopt to increase their population fitness [11]. In this frame we consider a

population structured by age, with juvenile and adult classes, and by behavioural tactics,

adults choose between classical hawk and dove tactics in order to get access to a resource.

The principal goal of this paper is analysing the strategies that maximize population

fitness. Concerning strategies, we suppose, on the one hand, that adult individuals could

adopt an aggressive tactics in order to hoard resources with the drawback of larger costs due

to injuries and extra mortality and, on the other hand, they might alternatively use a non-

aggressive tactics that entails sharing resources without fight costs. We describe the

population dynamics by means of a simple model susceptible of being studied analytically

that, at the same time, allows revealing the general trends of our main goal.

The mathematical model takes the form of a discrete system that couples two

processes: the adult competition for resources, described by the classical hawk–dove game

model [11,14,17,23], and the demography depicted by a density-dependent Leslie-like
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model [10] whose matrix entries depend on the densities of juvenile, hawk adult and dove

adult individuals. We also assume that game dynamics, produced at adult encounters, acts

at a faster timescale than population demography. It is the existence of these two different

timescales which allows using approximate aggregation methods [4,5] to reduce the

dimension of the complete initial model obtaining a mathematically tractable aggregated

model whose state variables are the juvenile and adult densities.

Though there are several works coupling fast game and slow population/community

dynamics at continuous time, using two-timescale ordinary differential equation systems

[2,3,13,16], to our knowledge, few works have been devoted to the same setting at

discrete time. We could mention a previous study [8] where such kind of model was

presented. In contrast to that study we present a fully nonlinear model (the model in [8]

was linear) by considering the more realistic case of density-dependent recruitment of

juveniles to adult stage and adult fertility and survival rates depending on hawks/doves

densities and on fighting costs and gains. We also include in this study an explicit

formulation of the hawk–dove discrete model (which is obviated in [8]) and prove that

aggregation results apply.

This paper is organized as follows. In Section 2, we first present the two sub-models,

the game dynamics and the Leslie models, which are subsequently coupled to obtain the

complete model. Section 3 is devoted to the analysis of the complete model through the

aggregated model. Section 4 includes the presentation of results and perspectives. Finally,

Appendix containing technical results conclude the paper.

2. Presentation of the model

We consider an age-structured population with two age classes: non-reproductive

(juvenile) and reproductive (adult) individuals. Reproductive individuals are assumed to

compete to access the available resources and, according to their behaviour, belong to one

of the following categories: aggressive or non-aggressive. We denote n1(t), nH(t) and nD(t),

respectively, the densities of juveniles, hawk adults and dove adults. The population vector

at time t is thus: NðtÞ ¼ ðn1ðtÞ; nHðtÞ; nDðtÞÞ
T [ V3 where V3 :¼ {ðn1; nH ; nDÞ [ R3; ni $

0; i ¼ 1;H;D} and T denotes the transposition. We also note the total number of adult

individuals at time t by n2ðtÞ ¼ nHðtÞ þ nDðtÞ.

2.1 Fast process: game dynamics

We assume that reproductive individuals frequently encounter each other and compete

for resources, food or mates. The two behavioural phenotypes, hawk and dove, are

assumed to be achievable by any adult, whatever their genotype is. Individuals may

choose these alternative tactics according to the conspecifics they encounter (due to

physical strength, dominance rank of the opponent, etc.). Each encounter event leads to

a pay-off, depending on the tactics adopted by the two opponents. One may assume

that, after a sufficiently large number of encounters, each individual is able to estimate

the success of each tactics and will more often play the tactics that corresponds, in

average, to the best pay-off. We assume that the proportion of individuals playing a

strategy H or D increases (decreases) when the difference between the pay-off of this

tactics and the average pay-off in the population is positive (negative). These

hypotheses are included in the model through the classical hawk–dove pay-off matrix,

denoted A, whose coefficients ai, j represent the pay-offs of individuals playing the i

M. Marvá et al.2
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strategy against a j strategist. Matrix A reads as follows:

A ¼

G2C
2

G

0 G
2

0
@

1
A;

where G is the gain and C is the cost of injuries resulting of fights. Both G and C are

positive.

The discrete time hawk–dove game equations (see equation (16.4) in [10]) can be

deduced by an appropriate discretization of the corresponding ordinary differential

equation system. In Ahmed and Hegazi [1], these discrete equations are studied. Using

them we define the fast dynamics for adults through the following map:

P2ðnH ; nDÞ :¼

2ðGþCÞn2
Hn2þð2GþCÞnH n2

2

2Cn2
H
þðGþCÞn2

2

Gn2
Dn2þCnDn2

2

2Cn2
H
þðGþCÞn2

2

0
BB@

1
CCA ð1Þ

if n2 – 0, where we recall that n2 ¼ nH þ nD and P2(0, 0) ¼ (0, 0). As the juveniles are not

affected by fast dynamics the map representing it for the whole population is

Pðn1; nH ; nDÞ ¼ ðn1;P2ðnH ; nDÞÞ; ð2Þ

where P: V3 ! V3 and P2 is the map defined in (1).

2.2 Slow dynamics: demography

Demography is driven by a density-dependent Leslie matrix of the form

Lðn1; nH ; nDÞ ¼

0 FHðnH ; nDÞ FDðnH ; nDÞ

qS1ðn1Þ SHðnH ; nDÞ 0

ð1 2 qÞS1ðn1Þ 0 SDðnH ; nDÞ

0
BB@

1
CCA; ð3Þ

where S1(n1) is the juvenile’s survival rate and parameter q [ (0,1) represents the

proportion of juveniles becoming hawk adult; SiðnH ; nDÞ, with i ¼ H, D, are the hawk and

dove survival rates and Fi(nH, nD) the corresponding fecundity rates.

Juvenile survival rate S1(n1) is assumed density dependent and following [6] we

define it as

S1ðn1Þ ¼
S1

1 þ bn1

;

where S1 and b are strictly positive constants. This function is monotone decreasing,

i.e. the survival rate of juvenile decreases as juvenile density increases.

Concerning adult survival rates, we assume that escalated contests cause injuries

which provoke a decrease in adult survival according to

SiðnH ; nDÞ ¼ Sie
2a �CiðnH ;nDÞ i ¼ H;D;

where Si, for i ¼ H,D, is a positive constant, C̄i(nH,nD) is the average cost received by an

individual of subgroup i and a . 0 is a constant regulating the effect of the average cost on

Journal of Difference Equations and Applications 3
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the survival rate. C̄i(nH, nD) is calculated by adding the cost for hawks and doves weighted

by the current proportion of hawks and doves. So, the average dove cost is zero as doves do

not fight and so they do not get injured:

�CDðnH ; nDÞ ¼ 0
nH

n2

þ 0
nD

n2

¼ 0:

On the other hand, when a hawk encounters another hawk they share cost, while there is no

cost for a hawk meeting a dove, which yields the average hawk cost:

�CHðnH ; nDÞ ¼
C

2

nH

n2

þ 0
nD

n2

:

Finally, we assume that fecundity rates Fi(nH, nD) depend on the average gains �GiðnH ; nDÞ,

for i ¼ H, D, which are calculated as done for the average costs. Doves share gains when

meet each other but they get no gain when encounter a hawk, so that

�GDðnH ; nDÞ ¼ 0
nH

n2

þ
G

2

nD

n2

:

Hawks share gains when meeting another hawk and they get full gain when encountering a

dove, thus

�GHðnH ; nDÞ ¼
G

2

nH

n2

þ G
nD

n2

:

For the precise form of the fecundity rates we consider two different cases.

The first case is appropriate for species for which the amount of resource has a

continuous effect on fecundity, we propose for them Holling-type fecundity rates:

FiðnH ; nDÞ ¼
Fi

�GiðnH ; nDÞ

gþ �GiðnH ; nDÞ
ð4Þ

for i ¼ H, D, where Fi and g are positive constants, being g the parameter that permits to

control the ‘speed’ to reach the plateau of fecundity.

The second case corresponds to species where individual must accumulate a given

amount of resource before reproduction is available. This effect is modelled using

threshold fecundity rates:

FiðnH ; nDÞ ¼
Fi

1 þ a=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ a2

p £
�GiðnH ; nDÞ2 affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 þ ð �GiðnH ; nDÞ2 aÞ2
p þ

affiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ a2

p

 !
; ð5Þ

for i ¼ H, D, where Fi and a are positive constants, being a the threshold of the average

gain required for initial reproduction [8].

We point out that the precise form of these functions is not crucial in the carried out

analytical study of the model. They will only be explicitly considered in the numerical

simulations.

M. Marvá et al.4
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2.3 The complete model

We build up the complete model combining these two processes presented in Sections 2.1

and 2.2. Compared to the demographic process, individual encounters and fights for

resources are much more frequent, so that we consider them acting at different timescales.

We denote k a positive integer measuring the timescales ratio assuming that, on average, k

adult encounters take place within each reproductive period. We express the discrete

system using the time unit associated with reproduction; thus, we let game dynamics acts k

times, P (k)(�), followed by the demographic dynamics, represented by matrix L, getting

the following system:

Nkðt þ 1Þ ¼ L P ðkÞðNkðtÞÞ
� �

�P ðkÞðNkðtÞÞ; ð6Þ

where we call Nk(t) the vector of state variables at time t.

3. Analysis of the model

In this section we accomplish the analysis of the complete model (6) using approximate

aggregation techniques, in particular, following those results in Sanz et al. [14]. Let us

briefly describe the approximate aggregation procedure. This approach assumes that fast

dynamics instantaneously achieves an equilibrium, that is, there exists

lim
k!1

P ðkÞðNÞ ¼ �PðNÞ; for every N [ V3: ð7Þ

Replacing in the complete system (6) the fast dynamics by its equilibrium (7), we get the

so-called auxiliary system

Nðt þ 1Þ ¼ Lð �PðNðtÞÞÞ� �PðNðtÞÞ ð8Þ

which approaches the complete model for k large enough (note that parameter k is not

needed anymore). It is also assumed that P̄ admits a suitable decomposition

�P ¼ E+G; ð9Þ

with G: V3 ! V2 and E: V2 ! V3, where V2 , R2 is the non-negative cone. Then,

defining the so-called global variables Y ¼ G(N) it is obtained a reduced (also called

aggregated) system for them:

Yðt þ 1Þ ¼ GðLðEðYðtÞÞÞ�EðYðtÞÞÞ: ð10Þ

Next we build up the aggregated system associated with system (6).

3.1 Reduction in the model

First of all, we need to calculate the limit in (7). This is done in the next proposition where

we find, as in the classical hawk–dove game, that if cost, C, is larger than gain, G, the adult

population tends to have hawks in proportion G/C and doves in proportion 1 2 G/C, while

in the opposite case all adults become hawks.

Journal of Difference Equations and Applications 5
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Proposition 3.1. Let P be the map defined in (2). Then, for each N ¼ ðn1; nH ; nDÞ [ V3

we have that

�PðNÞ ¼ lim
k!1

P ðkÞðNÞ ¼ n1; n*
Hn2; ð1 2 n*

HÞn2

� �T
ð11Þ

where n*
H ¼ G=C if G , C and n*

H ¼ 1 if G . C.

Proof. See Appendix. A

P̄(N) can be expressed in terms of a 3 £ 2-matrix, �P*, and the vector of total densities of

juveniles and adults ðn1; n2Þ
T as �PðNÞ ¼ �P*�ðn1; n2Þ

T where

�P* ¼

1 0

0 n*
H

0 1 2 n*
H

0
BB@

1
CCA:

Now, it is straightforward that the decomposition in (9), �PðNÞ ¼ E+GðNÞ, can be done

taking

Gðn1; nH ; nDÞ ¼
1 0 0

0 1 1

 !
�N :¼ B�N ¼

n1

n2

 !

and

Eðn1; n2Þ ¼ �P*�
n1

n2

 !
:

So, the global variables G(N) are the total densities of juveniles and adults and we can

calculate the aforementioned aggregated system (10):

n1ðt þ 1Þ

n2ðt þ 1Þ

 !
¼ B�L �P*�

n1ðtÞ

n2ðtÞ

 ! !
� �P*�

n1ðtÞ

n2ðtÞ

 !

which simplifies to

n1ðt þ 1Þ

n2ðt þ 1Þ

 !
¼

0 �F

S1

1þbn1ðtÞ
�S

0
@

1
A n1ðtÞ

n2ðtÞ

 !
; ð12Þ

where

�F ¼ n*
HFH n*

Hn2; ð1 2 n*
HÞn2

� �
þ 1 2 n*

H

� �
FD n*

Hn2; ð1 2 n*
HÞn2

� �
and

�S ¼ n*
HSH n*

Hn2; ð1 2 n*
HÞn2

� �
þ 1 2 n*

H

� �
SD n*

Hn2; ð1 2 n*
HÞn2

� �
;

where n*
H is defined as before. We point out that both F̄ and S̄ are constant because Fi and

Si, with i ¼ H,D, depend on the proportions of hawks and doves, reflected in n*
H , and not

on the adult total density n2 (see Section 2.2).

M. Marvá et al.6
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3.2 Analysis of the model

We first discuss the asymptotic behaviour of the aggregated system (12) in Proposition 3.2.

Then, we use the main theorem in Sanz et al. [14] to obtain some results on the asymptotic

behaviour of the complete system (6) which are included in Theorem 3.1.

Proposition 3.2. For system (12):

1. If

�FS1 þ �S , 1; ð13Þ

the trivial equilibrium is globally asymptotically stable.

2. If

�FS1 þ �S . 1; ð14Þ

system (12) possesses an unique positive equilibrium:

n* ¼ n*
1; n*

2

� �
¼

�FS1 þ �S 2 1

bð1 2 �SÞ
;
n*

1

�F

� �
ð15Þ

which is asymptotically stable.

Proof. (0,0) is an equilibrium of system (12). Any solution ðn1ðtÞ; n2ðtÞÞ of system (12) is

bounded from above by the solution Z(t) ¼ (z1(t),z2(t)) for the same initial conditions of

system

Zðt þ 1Þ ¼
0 �F

S1
�S

 !
ZðtÞ: ð16Þ

Condition (13) implies that (0, 0) is a globally asymptotically stable for the linear system

(16) what yields 1.

A necessary condition for system (12) to have a non-trivial equilibrium n* ¼ ðn*
1; n*

2Þ is

that matrix

0 �F

S1

1þbn1ðtÞ
�S

0
@

1
A

has an eigenvalue equal to 1, that is, 1 2 �S 2 �FS1=ð1 þ bn1Þ ¼ 0. Solving this equation for

n1 we obtain

n*
1 ¼

�FS1 þ �S 2 1

bð1 2 �SÞ

which is positive if and only if condition (14) holds.

To study the stability of n*, we apply the Jury’s test ([13]) to the matrix of the

linearization of system (12) at n*. Calling M the map associated with (12), the

aforementioned matrix is the Jacobian at n*, JM(n*), and the conditions for asymptotic

Journal of Difference Equations and Applications 7
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stability are jtr ðJMðn*ÞÞj , 1 þ det ðJMðn*ÞÞ , 2, that is,

�S , 1 2
ð1 2 �SÞ2

S1
�F

, 2:

The rightmost inequality obviously holds and the leftmost inequality is straightforwardly

deduced from inequality (14). A

The asymptotic results obtained in Proposition 3.2 are now extended to the complete

system (6). Roughly speaking, we prove that, for sufficiently large timescales ratio, all

solutions of (6) tend to zero when condition (13) holds, while in the case that condition

(14) is met (6) possesses an asymptotically stable positive equilibrium which can be

approximated together with its basin of attraction in terms of n* and its own basin of

attraction.

Theorem 3.1. Let us consider the complete system (6)

Nkðt þ 1Þ ¼ L P ðkÞðNkðtÞÞ
� �

�P ðkÞðNkðtÞÞ:

Then:

1. If condition (13), F̄S1 þ S̄ , 1, holds then there exists an integer k1 . 0 such that

for each k $ k1 the trivial equilibrium is globally asymptotically stable.

2. If condition (14), F̄S1 þ S̄ . 1, holds then there exists r . 0 and an integer k0 . 0

such that:

a. For each k $ k0 there exists an unique positive asymptotically stable

equilibrium N*
k , verifying kN*

k 2 Eðn*
1; n*

2Þk , r and

lim
k!1

N*
k ¼ E n*

1; n*
2

� �
¼

�FS1 þ �S 2 1

bð1 2 �SÞ
; n*

H

�FS1 þ �S 2 1

�Fbð1 2 �SÞ
; ð1 2 n*

HÞ
�FS1 þ �S 2 1

�Fbð1 2 �SÞ

� �

b. If N0 ¼ ðn0
1; n0

H ; n0
DÞ [ V3 is such that n0 ¼ GðN0Þ ¼ ðn0

1; n0
H þ n0

DÞ is in the

basin of attraction of n* in system (12) then N0 is in the basin of attraction of N*
k

in system (6).

Proof. See Appendix. A

4. Discussion

Our results are represented in a synthetic manner in Figures 1 and 2 displaying the total

population density at the equilibrium when a Holling fecundity function (left) or a

thresholds fecundity function (right) is considered. We point out that the outcome of the

model for both fecundity functions is qualitatively the same. In fact, the quantitative

differences are not significant so that both figures admit a common description. The total

population density can be understood as a measure of the population fitness with respect to

game parameters that relate to individual behaviour, the gain G and the cost C. Namely, we

consider here that populations having the largest total density at equilibrium might have

a better chance to survive in the long term. Therefore, we assume that individuals would

try to find an environment that maximizes the total population density in the long term.

M. Marvá et al.8
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In our model G, the gain of the game can be seen as the resource biomass that is obtained

when an individual is the winner of a contest. Therefore, a gradient of gain G can be

considered as a gradient of resource abundance from poor (associated with small gains) to

rich (associated with large gains) environments. A gradient of cost can be considered as

a measure of individual aggressiveness, from few aggressive individuals or species

(associated with small costs) to very aggressive specimens (associated with large costs).

Each plotting displayed in Figures 1 and 2 is composed of two parts that should be

considered separately below and above the bisectrix G ¼ C. Indeed, when G . C, the

adult population is pure hawk while in the domain G , C, the population is mixed with a

constant proportion of hawks at the fast equilibrium G/C. In the first domain, G . C, the

total population fitness is a monotone increasing function of G at fixed cost. This signifies

that the population fitness always increases when the environment is richer and this makes

sense. On the contrary, at fixed gain G, the population fitness increases for smaller costs.

Figure 1. Equilibrium n* as a function of gain (G) and cost (C) considering Holling-type fecundity
function (4). Parameter values S1 ¼ 0.7, b ¼ 1, g ¼ 0.8, F ¼ 1 and a ¼ 0.05.

Figure 2. Equilibrium n* as a function of gain (G) and cost (C) considering threshold fecundity
function (5). Parameter values S1 ¼ 0.7, b ¼ 1, g ¼ 0.8, F ¼ 1, a ¼ 0.05 and a ¼ 0:1.

Journal of Difference Equations and Applications 9
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Therefore, in a pure hawk population, as expected, the total fitness increases when the

adults are less aggressive leading to less injuries and to smaller mortality. In the second

domain, G , C, the population is mixed with hawks and doves. In that domain, if one

keeps constant the cost C, we observe a maximum of the population fitness when the gain

increases from zero. Therefore, the model predicts that according to the level of

aggressiveness of the population, there is a particular type of environment that maximizes

the population fitness. Similarly, if one keeps the gain G constant, there is a cost that

maximizes the population fitness. In other words, in a given environment, there is a level

of aggressiveness in the population that maximizes the population fitness. Moreover,

Figures 1 and 2 show a curve of local maxima associated with a hill line observed in the

domain G , C. It is important to note that the population fitness along this hill increases

for larger gains and costs. Therefore, it signifies that populations might increase their

fitness by choosing to settle in a better environment (larger G) as well as by adopting a

more aggressive behaviour (larger C). However, the hill curve has a slope that slightly

decreases when C increases. Therefore, the population fitness is increased for populations

in which the proportion of aggressive individuals decreases when the cost becomes larger.

In other words, the model predicts that when the cost is high, the proportion of aggressive

individuals should be smaller in order to maximize the population fitness. Behavioural

strategies maximizing population fitness range from populations with rather large

proportions of aggressive individuals at small cost to populations with a very small

proportion of aggressive individuals at much larger cost. Consequently, the model shows a

general trend with species looking for richer environment (bigger G) having small

proportions of hawk individuals at large cost, i.e. individuals rarely fighting but with

strong injuries when fighting occurs.

Global change has an important impact on the environment. As a consequence it

makes sense to assume that climate change may progressively modify the quality of the

environment. A typical case is that of an environment having abundant rainfalls that, due

to global change, might evolve towards a much dryer climate with fewer resources.

Similarly, human activities such as industries and settlements have important

consequences on ecosystems by reducing habitats quality and access to resources for

many animal species. In our model this can be interpreted through parameter G that

Figure 3. Hill curve of local maxima and the effect of global change and human activities on the
population size. As G decreases, the population size leaves the top of the hill. Reducing
aggressiveness, C, will let the population reach the maximum fitness at the top of the hill.
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decreases together with the quality of the environment. A first response of a population to

this decrease could be migrating to other regions where G is larger in order to increase its

fitness. However, if we assume that these changes occur in an ecological island then

animals must necessarily stay and, in this rather extended case, our model can be used to

make predictions about the expected changes in individual behaviour as response to

habitat deterioration. Let us analyse the case of a population established in an environment

with the maximum fitness associated with the corresponding G-value and suppose that

G , C, i.e. at a position along the hill curve mentioned in the previous paragraph. The

population would be mixed with a constant, G/C, proportion of hawks. Now, we introduce

a progressive environment change that implies parameter G to slowly decrease year after

year. In that case, the equilibrium point does not remain on the hill curve but will move

along the line C ¼ constant in the direction of smaller G values, see Figure 3. At the same

time individuals might also progressively modify their behaviour in response to this

evolution and so we can assume that population fitness would tend to slowly return to the

hill curve. That means that a plausible response to a slow decrease in G is a progressive

individual behaviour change, which could be described by the level of aggressiveness in

the population, which is represented by parameter C in our model. Would C increase or

decrease? An increase in C would lead to a smaller fitness and therefore would not be

selected in the long term. On the contrary, a decrease in C would allow to return to a fitness

along the hill curve. Therefore, we can expect in an environment becoming poorer that

animals tend to be less aggressive (smaller C) in order to maximize population fitness.

Obviously, any change in increasing parameter G, i.e. enriching natural ecosystem, such as

protection rules like creation of natural parks, would lead to the opposite result, i.e. an

increase in parameter C.

The simple model presented in this work introduces elements enough to show a

general trend about effects of individual behaviour on population fitness. Nevertheless,

it would be also interesting to consider more realistic models which include different

types of dominance associated with different adult sizes or age classes. The existence

of different dominance classes could be a useful strategy of some species to avoid too

many fightings between individuals as they would only fight against individuals belonging

to their own class and not with those of other classes, limiting in this way injuries

and global mortality. We intend to treat that issue through a more complex model in

future work.
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Appendix

Proof of Proposition 3.1. Let us define nH ¼ nH/n2 if n2 . 0 and 0 if n2 ¼ 0. Then P(N)

can be written as

Pðn1; nH ; nDÞ ¼ Pðn1; n2nH ; n2ð1 2 nHÞÞ ¼ ðn1;fðnHÞn2; ð1 2 fðnHÞÞn2Þ ð17Þ

where function f is defined as follows:

fðnHÞ ¼
2ðG þ CÞn2

H þ ð2G þ CÞnH

2Cn2
H þ G þ C

: ð18Þ

Now, the fact that n2 is invariant for P allows to express P ðkÞ in terms of f ðkÞ:

P ðkÞðNÞ ¼ n1; n2f
ðkÞðnHÞ; n2ð1 2 f ðkÞðnHÞÞ

� �
ð19Þ

Function f is monotone increasing on [0, 1], f(0) ¼ 0, f(1) ¼ 1 and for any nH [ (0,1)

lim
k!1

f ðkÞðnHÞ ¼ n*
H ðG=C if G , C; 1 if G . CÞ ð20Þ

which implies that

�PðNÞ ¼ lim
k!1

P ðkÞðNÞ ¼ n1; n*
Hn2; ð1 2 n*

HÞn2

� �
and Proposition 3.1 is proved. A
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Proof of Theorem 3.1. To apply the main results in Sanz et al. [22] and so get proven

Theorem 3.1, we need to justify that limk!1P ðkÞðNÞ ¼ �PðNÞ uniformly on compact sets

and the same happens with the limit of their differentials, i.e. limk!1DP ðkÞðNÞ ¼ D �PðNÞ

uniformly on compact sets.

It is straightforward to prove that the limit in (20) is uniform on compact subsets of

(0, 1) and from this and (19) we have that the pointwise limit obtained in (3.1) is in fact

uniform on compact sets.

To prove that limk!1DP ðkÞðNÞ ¼ D �PðNÞ uniformly on compact sets, let us, first of all,

express DP (k)(N) in terms of ðf ðkÞÞ0 and also calculate DP̄(N).

From (19) we get

DP ðkÞðNÞ ¼

1 0 0

0 f ðkÞðnHÞ þ ð1 2 nHÞðf
ðkÞÞ0ðnHÞ f ðkÞðnHÞ2 nHðf

ðkÞÞ0ðnHÞ

0 1 2 f ðkÞðnHÞ2 ð1 2 nHÞðf
ðkÞÞ0ðnHÞ 1 2 f ðkÞðnHÞ þ nHðf

ðkÞÞ0ðnHÞ

0
BBB@

1
CCCA

DP ðkÞðNÞ ¼

1 0 0

0 0 0

0 1 1

0
BBB@

1
CCCAþ f ðkÞðnHÞ

0 0 0

0 1 1

0 21 21

0
BBB@

1
CCCA

þ ðf ðkÞÞ0ðnHÞ

0 0 0

0 ð1 2 nHÞ 2nH

0 2ð1 2 nHÞ nH

0
BBB@

1
CCCA:

On the other hand, as �PðNÞ ¼ ðn1; n
*
Hn2; ð1 2 n*

HÞn2Þ we get that

D �PðNÞ ¼

1 0 0

0 n*
H n*

H

0 1 2 n*
H 1 2 n*

H

0
BB@

1
CCA:

Having in mind that limk!1P ðkÞðNÞ ¼ �PðNÞ uniformly on compact sets, to prove that also

limk!1DP ðkÞðNÞ ¼ D �PðNÞ uniformly on compact sets we only need to show that

the following limit is uniform on compact sets of (0, 1),

limk!1ðf
ðkÞÞ0ðnHÞ ¼ 0:

This is straightforward from the fact that 0 , f0ðn*
HÞ , a , 1 and so there is neighbourhood

I , (0,1) of n*
H such that for every nH [ I we also have 0 , f0(nH) , a , 1. Now, the

uniform limit (20) and the chain rule to calculate ðf ðkÞÞ0ðnHÞ complete the proof. A
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