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Abstract The purpose of this work is reviewing some reduction results to deal

with systems of nonautonomous ordinary differential equations with two time

scales. They could be included among the so-called approximate aggregation

methods. The existence of different time scales in a system, together with some

long-term features, are used to build up a simpler system governed by a lesser

number of state variables. The asymptotic behavior of the latter system is then used

to describe the asymptotic behaviour of the former one. The reduction results are

stated in two particular but important cases: periodic systems and asymptotically

autonomous systems. The reduction results are illustrated with the help of simple

spatial SIS epidemic models including either periodic or asymptotically autonomous

terms.

Keywords Slow–fast dynamics � Singular perturbations � Periodic

systems � Asymptotically autonomous systems � Epidemic models

1 Introduction

The mathematical models used in population dynamics necessarily show the

complexity found in natural systems. They are often governed by a large number of

variables corresponding to different interacting organization levels. Some methods

of reduction should be used in order to transform such models into mathematically
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tractable ones. The so-called aggregation of variables methods can be included in

this latter category.

The term aggregation of variables appeared first in economy and later introduced

in ecology (Luckyanov et al. 1983; Iwasa et al. 1987, 1989). The aggregation of a

system consists of finding a certain number of global variables, functions of its state

variables, and a system describing their dynamics. Aggregation is called perfect if

the dynamics of the global variables is identical both in the initial system and in the

aggregated one (Iwasa et al. 1989). On the other hand, approximate aggregation

(Iwasa et al. 1987) deals with methods of reduction where the consistency between

the dynamics of the global variables in the initial and the aggregated systems is only

approximate. In Auger (1989) it is suggested a whole program of study of

aggregation methods linked to the existence of different time scales in the frame of

autonomous ordinary differential equations. This study was motivated in the broad

sense by the hierarchy theory in ecology. The method was rigourously justified in

Auger and Roussarie (1994) in terms of an adequate version of the Fenichel centre

manifold theorem (Fenichel 1971, 1979). It allows to study the asymptotic behavior

of the complete initial system with the help of a reduced system for some global

variables called aggregated system. The approximate aggregation methods have

also been developed for time discrete and infinite dimensional dynamical systems

(Auger et al. 2008a, 2012; Sanz and Alonso 2010; Bravo de la Parra et al. 2013).

Autonomous systems represent population dynamics models where environment

is taken to be constant. In order to consider environmental fluctuations the

corresponding system must be nonautonomous which, in general, are much more

difficult to analyze. Nevertheless, there are situations where it is possible to take

advantage of some properties of the varying parameters, periodicity or being

asymptotically constant, that simplify the analysis. The purpose of this work is

reviewing and illustrating the aggregation techniques recently proposed (Marvá

et al. 2012a, b, c, 2013) to deal with systems of nonautonomous ordinary differential

equations with two time scales.

The utilized reduction techniques are mild versions of general results from

singular perturbation methods dealing with slow–fast initial value problems of the

form

e
dx

dt
¼ f ðt; x; y; eÞ; xðt0Þ ¼ x0

dy

dt
¼ gðt; x; y; eÞ; yðt0Þ ¼ y0

8
><

>:

where x 2 R
m; y 2 R

n and e is a positive small parameter. Variable x exhibits a fast

dynamics, represented by f ðt; x; y; 0Þ, while variable y moves at the slow time scale.

In Tikhonov (1952), for sufficiently smooth f and g and assuming the existence of a

unique solution of the reduced problem (setting e ¼ 0)

0 ¼ f ðt; x; y; 0Þ;
dy

dt
¼ gðt; x; y; 0Þ; yðt0Þ ¼ y0

8
<

:
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the solutions of the initial system are uniformly approximated, when e tends to 0, by

those of the reduced system on bounded time intervals. A key assumption is that the

solutions x ¼ /ðt; yÞ of the equation 0 ¼ f ðt; x; y; 0Þ are asymptotically stable

equilibria of the equation dx=ds ¼ f ðt; x; y; 0Þ uniformly in t and y, considered here

as parameters. The idea is that the fast dynamics acting on variable x has a negli-

gible dependence on small variations of parameters t and y. This result is completed

(Verhulst 2005, 2007) with some others giving asymptotic expansions of the

solutions including the fast behaviour of the boundary layer. The interest in

applications of the analysis of the initial slow–fast system focus on its asymptotic

behaviour. So, the reduction results just described need to be deepen so that they can

be applied on infinite intervals of time. This is done for the first time in Hoppen-

steadt (1966) with the help of a new stability hypothesis. The equation dy=dt ¼
gðt;/ðt; yÞ; y; 0Þ must possess a uniformly asymptotically stable solution. The

demanding hypotheses needed to carry out the whole reduction process can be

checked with simpler assumptions when dealing with particular forms of the general

slow-fast system. This task is undertaken in (Marvá et al. 2012c, 2013) and

reviewed in this work in a simplified form.

In Sect. 2 general results on approximate aggregation of nonautonomous systems

of ordinary differential equations are presented. They are based upon the theory of

singular perturbations and quasi-static state analysis as presented in (Hoppensteadt

1966, 1971, 1993, 2010). The reduction results are particularized for periodic and

asymptotically autonomous systems. A simple spatial epidemic model including

periodic and asymptotically autonomous terms is presented in Sect. 3. Its analysis is

carried out with the help of the reduction results of the previous section.

2 System Reduction

In this section we consider systems of differential equations of the form:

e
dn

dt
¼ f ðt; nÞ þ esðt; n; eÞ; ð1Þ

where n 2 R
m and e [ 0 is a small parameter. We can interpret that the dynamics is

acting at two different time scales with variable t representing the slow time vari-

able. Functions f and s are associated to the fast and slow dynamics, respectively.

The proposed reduction of system (1) follows the structure of the approximate

aggregation methods established in the case of autonomous systems. See Auger

et al. 2008a, b for reviews of the method with applications to different biological

models. Though the reduction structure of both cases, autonomous and non

autonomous, is the same the utilized mathematical techniques are different. For

autonomous systems Fenichel centre manifold theorem (Fenichel 1971, 1979)

allows to express the asymptotic behaviour of the solutions through the dynamics on

a center manifold that admits a regular expansion in terms of the parameter e (Jones

1994; Verhulst 2005, 2007). In the case of nonautonomous systems we use the

results on solutions of ordinary differential equations with small parameters on

infinite intervals of time found in Hoppensteadt (1966, 1971, 1993, 2010).
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The first step in reducing system (1) is to transform it into the so-called slow–fast

form. An appropriate change of variables n 2 R
m ! ðx; yÞ 2 R

m�k � R
k yields the

following system:

e
dx

dt
¼ Fðt; x; yÞ þ eRðt; x; y; eÞ;

dy

dt
¼ Sðt; x; y; eÞ;

8
><

>:
ð2Þ

where y represents slow variables in the following sense. Changing the time variable

to the fast scale, t ¼ es and d=ds ¼ ed=dt, we obtain for y the following equation

dy

ds
¼ eŜðs; x; y; eÞ;

which tell us that considering fast dynamics as instantaneous with respect to slow

dynamics, i.e., setting e ¼ 0, we get dy=ds ¼ 0 and hence that y is constant at the

fast time scale.

To find the appropriate transformation leading to the slow–form (2) of the system

(1) could be, in general, difficult (Noethen and Walcher 2009, 2011). Nevertheless,

in some applications, as it can be seen in the next section, the context leads to it

straightforwardly. The search for the slow variables, those ones kept constant by the

fast dynamics, yields the key of the transformation.

To describe the general reduction result stated in theorem 6 in the appendix we

pose the following initial value problem:

e
dx

dt
¼ Fðt; x; yÞ þ eRðt; x; y; eÞ; xðt0Þ ¼ x0;

dy

dt
¼ Sðt; x; y; eÞ; yðt0Þ ¼ y0:

8
><

>:
ð3Þ

Formally setting e ¼ 0 in (3) we obtain a reduced problem or, as it is called in the

theory of singular perturbations, a degenerate system (Hoppensteadt 1966; Tikho-

nov et al. 1985):

0 ¼ Fðt; x; yÞ;
dy

dt
¼ Sðt; x; y; 0Þ; yðt0Þ ¼ y0:

8
<

:
ð4Þ

We should be able to solve the equation 0 ¼ Fðt; x; yÞ for x in terms of t and y.

Hypothesis H2 of theorem 6 assumes the existence of a function x ¼ Uðt; yÞ 2 C2

solving this equation. It represents the fast equilibria for constant values of time t

and of the slow variables y. Substituting those values of x into the initial value

problem for y in (4) leads us to the reduced system:

dy

dt
¼ Sðt;Uðt; yÞ; y; 0Þ; yðt0Þ ¼ y0: ð5Þ

Under certain hypotheses, which are stated in detail in theorem 6, it is possible to

approximate the solution ðxðtÞ; yðtÞÞ of (3) by the solution yðtÞ of (5) together with

the corresponding fast equilibria xðtÞ ¼ Uðt; yðtÞÞ.
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The are two main conditions to be met. The first one requires a stability condition for

system dx=ds ¼ Fðt; x; yÞwhen taking t and y as parameters: fast equilibria x ¼ Uðt; yÞ
must be asymptotically stable uniformly in t 2 ½t0; T � and y in a certain compact set.

This hypothesis allows the aforementioned approximation of solutions on bounded

time intervals (Tikhonov et al. 1952, 1985; Verhulst 2005; Hoppensteadt 2010).

The extension of the results to unbounded time intervals needs the previous

condition to be true for t 2 ½t0;1Þ and a stability condition for system dy=dt ¼
Sðt;Uðt; yÞ; y; 0Þ (Hoppensteadt 1966, 1971, 1993, 2010): it must possess an

uniformly asymptotically stable solution for t 2 ½t0;1Þ with y0 in its domain of

attraction.

These two conditions are far from being easily met. In the following we state the

general approximation result found in theorem 6 for two particular but useful

settings. The reward of this particularization is getting approximation theorems

which hypotheses are much more easily checked.

2.1 Periodic Case

Here we consider systems encompassing environmental fluctuations of periodic

type. This kind of fluctuation pervades all natural systems. To simplify as much as

possible the hypotheses we assume that both F and S, the functions describing the

fast and the slow dynamics in system (2), are periodic of the same period x.

We use the following notation: KR ¼ fx 2 R
m�k
þ : jxj �Rg and KR0 ¼

fy 2 R
k
þ : jyj �R0g, K ¼ KR � KR0 , X ¼ ½t0;1Þ � K, K̂ ¼ K � ½0; e0� and

X̂ ¼ X� ½0; e0�.

Theorem 1 Let us consider system (3) where functions F and S are periodic of

the same period x. Let us assume:

1. F 2 C2ðXÞ, R; S 2 C2ðX̂Þ, and any solution of system (3) beginning in KR � KR0

remains there for t 2 ½t0;1Þ.
2. There is a function x ¼ Uðt; yÞ 2 C2ð½t0;1Þ � KR0 Þ such that for any ðt; yÞ 2
½t0;1Þ � KR0 the following hold:

(a) Fðt;Uðt; yÞ; yÞ ¼ 0.

(b) The real part of the eigenvalues of JxFðt;Uðt; yÞ; yÞ is negative.

3. The system of equations

d�y

dt
¼ Sðt;Uðt; �yÞ; �y; 0Þ; ð6Þ

has an asymptotically stable periodic solution y�ðtÞ of period x.

Let ðxeðtÞ; yeðtÞÞ be the solution of system (3) for ðxeðt0Þ; yeðt0ÞÞ ¼ ðx0; y0Þ, with x0

and y0 in the domains of attraction, respectively, of the equilibrium Uðt0; y0Þ of

system dx=ds ¼ Fðt0; x; y0Þ and of y�ðtÞ. Then, for any d[ 0, there exist ed [ 0 and

td [ t0 such that
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ðxeðtÞ; yeðtÞÞ � ðUðt; y�ðtÞÞ; y�ðtÞÞj j\d;

for every e� ed and every t� td.

On the one hand, the general hypothesis H3 of the theorem 6 is reduced to

checking the sign of the real parts of the eigenvalues of the Jacobian matrix

JxFðt;Uðt; yÞ; yÞ and, on the other hand, the asymptotic stability of y�ðtÞ implies,

being x-periodic, that it is uniform as required in hypothesis H4. The details of the

proof of the theorem together with an application to a periodic prey-predator model

with refuge can be found in Marvá et al. (2012c).

2.2 Asymptotically Autonomous Case

In this section we consider the case of asymptotically autonomous (in the sequel

A.A.) systems, which could be roughly described as nonautonomous systems

such that their time varying terms tend to be constant (Thieme and Castillo-

Chávez 1995; Li and Wang 2007), i.e., their time dependence disappears in the

long term.

A continuous function A : ðt0;1Þ � D! D with ðt0;1Þ � D 	 R� R
N , is

said to be asymptotically autonomous if there exists a continuous function �A :

D! D such that limt!1 Aðt; zÞ ¼ �AðzÞ uniformly on compact sets of D. If the

function A is asymptotically autonomous then the nonautonomous system x0 ¼
Aðt; xÞ is also called asymptotically autonomous, being the autonomous system

x0 ¼ �AðxÞ its associated limit system. The main results on A.A. systems can be

found in Markus (1956) and Mischaikow et al. (1995). Under certain conditions

the asymptotic behavior of an A.A. system can be obtained from its associated

limit system.

To state a result similar to theorem 1 for A.A. systems let us start with a system in

slow-fast form as (2) but expressed in terms of s ¼ t=e the fast time variable

dx

ds
¼ Fðs; x; yÞ þ eRðs; x; y; eÞ;

dy

ds
¼ eSðs; x; y; eÞ:

8
><

>:
ð7Þ

Theorem 2 Let us consider system (7) where functions F and S are

asymptotically autonomous on K and K̂, respectively, being �Fðx; yÞ and
�Sðx; y; eÞ their corresponding asymptotic limit functions. Let us assume:

1. F 2 C2ðXÞ, R; S 2 C2ðX̂Þ, and any solution of system (7) beginning in KR � KR0

remains there for forward time.

2. There is a function x ¼ UðyÞ 2 C2ðKR0 Þ such that for any y 2 KR0 the following

hold:

(a) �FðUðyÞ; yÞ ¼ 0.

(b) The real part of the eigenvalues of Jx
�FðUðyÞ; yÞ is negative.

290 M. Marvá, R. Bravo de la Parra

123



3. The system of equations

d�y

dt
¼ �SðUð�yÞ; �y; 0Þ; ð8Þ

has an asymptotically stable solution y�ðtÞ.

Let ðxeðtÞ; yeðtÞÞ, t ¼ es, be the solution of system (7) for ðxeðt0Þ; yeðt0ÞÞ ¼ ðx0; y0Þ,
with x0 and y0 in the domains of attraction, respectively, of the equilibrium Uðy0Þ of

system d�x=dt ¼ �Fð�x; y0Þ and of y�ðtÞ. Then, for any d [ 0, there exist ed [ 0 and

td [ t0 such that

ðxeðtÞ; yeðtÞÞ � ðUðy�ðtÞÞ; y�ðtÞÞj j\d;

for every e� ed and every t� td.

The main conditions of theorem 2 are expressed in terms of autonomous systems

related to the asymptotic limits of F and S. The details of the proof of the theorem

together with applications to gradostat models can be found in Marvá et al. (2013).

3 Application to a Simple Epidemic Model

In this section we illustrate the theorems stated in Sect. 2 applying them to a simple

epidemic model. We consider, on the one hand, the population split between

susceptible and infective individuals and, on the other hand, that susceptible

individuals can move between two different patches whereas infective individuals

rest confined in one of them. Movements of susceptible individuals are assumed to

be fast compared to the disease dynamics.

We call S1 and S2 the number of susceptible individuals in patches 1 and 2,

respectively, and I the number of infected individuals, that stay in patch 2.

We consider in patch 2 a classical SIS model Diekmann et al. (2013). The

susceptible-infective-susceptible (SIS) epidemiological model is the simplest

description of the dynamics of a disease that is contact-transmitted and that confers

no immunity against reinfection. It is appropriate for most diseases transmitted by

bacterial or helminth agents, and most sexually transmitted diseases as gonorrhea,

but not for diseases as AIDS for which there is no recovery.

The total population is assumed constant. We denote c the recovery rate and

BðS2; IÞ the incidence rate, that will be specified later on. Susceptible individuals

leave patch 1 and 2 at rates m1 and m2, respectively. The ratio between time scales

at which movements and disease dynamics act is represented by parameter e [ 0.

Thus, the initial complete model reads as follows:

e
dS1

dt
¼ �m1S1 þ m2S2;

e
dS2

dt
¼ m1S1 � m2S2 þ e �BðS2; IÞ þ cIð Þ;

dI

dt
¼ BðS2; IÞ � cI:

8
>>>>>><

>>>>>>:

ð9Þ
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We could think of patch 1 as a sort of refuge for susceptible individuals, or else of

patch 2 as a quarantine region. The model should serve to study the effect that

susceptible individuals displacements have on the outcome of epidemics. All the

coefficients of the model are assumed to depend on time. We present first a periodic

dependence and then we treat an asymptotically autonomous case.

We can find in the literature some other models concerning the study of two time

scales spatially distributed epidemics models in which the individuals movements

are considered fast. In Kouokam et al. (2008) an autonomous model is considered,

while periodic nonautonomous models are addressed in Marvá et al. (2012a). The

novelty of the simple model (9) could be found in the quarantine zone. There also

exists a vast literature encompassing studies of patchy distributed epidemic, mostly

autonomous, models where displacements and epidemics act at the same time scale,

see the recent review Arino (2009) and the references therein.

To transform system (9) into the slow-fast form described in (2) we make appear

the slow variable S ¼ S1 þ S2, the total number of susceptible individuals, which is

a constant of motion for the fast dynamics. Substituting S2 by S� S1 in (9) we

obtain:

e
dS1

dt
¼ �m1S1 þ m2ðS� S1Þ;

dS

dt
¼ �BðS� S1; IÞ þ cI;

dI

dt
¼ BðS� S1; IÞ � cI:

8
>>>>>><

>>>>>>:

ð10Þ

We notice that the total population N ¼ Sþ I keeps constant. Thus, the slow part of

the system can be described in terms of the variable I and the constant N. Intro-

ducing this reduction the system (10) takes the simpler form:

e
dS1

dt
¼ �m1S1 þ m2ðN � I � S1Þ;

dI

dt
¼ BðN � I � S1; IÞ � cI:

8
><

>:
ð11Þ

3.1 Case of Periodic Rates

The periodicity in the disease incidence rates is an issue broadly treated in the

literature, see Hethcote and Levin (1989) for a review. The incidence of many

infectious diseases often exhibits periodic patterns. Influenza is one of the diseases

that it is well reported to have a seasonal pattern every year Lofgren et al. (2007).

The number of measles cases per week also oscillates with a period of about 2 years

Anderson and May (1991). It is also known that other childhood diseases such as

mumps, chicken-pox, rubella, and pertussis exhibit seasonal behaviour. The

periodicity of 1 year, which is fairly general for these diseases, might have its

origin in the children contact rates depending on the duration of academic school

years. Meningococcal meningitis in western Africa also varies seasonally (Pascual

and Dobson 2004; Sultan et al. 2005) mainly due to atmospheric circulation. The
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yearly cyclic pattern of human immune system also yields seasonal oscillations of

certain diseases (Grassly and Fraser 2006; Lofgren et al. 2007).

The original SIS epidemic model assume the recovery rate c to be constant, and

the incidence rate to be of mass action type BðS; IÞ ¼ bSI with the parameter b,

called transmission rate, also constant. One of its first modifications considered a

periodic transmission rate bðtÞ Hethcote (1973).

Here we consider the system (11) with incidence function BðS; IÞ ¼ bðtÞSI. All

rates involved in the system are positive periodic functions of t sharing the same

period x. The nonautonomous periodic system reads as follows:

e
dS1

dt
¼ �m1ðtÞS1 þ m2ðtÞðN � I � S1Þ;

dI

dt
¼ bðtÞðN � I � S1ÞI � cðtÞI:

8
><

>:
ð12Þ

We follow the procedure described in Sect. 2 and then apply theorem 1 to analyzed

the asymptotic behaviour of the solutions of the system (12).

With the notations of Sect. 2, we have

Fðt; S1; IÞ ¼ �m1ðtÞS1 þ m2ðtÞðN � I � S1Þ;
Sðt; S1; IÞ ¼ bðtÞðN � I � S1ÞI � cðtÞI:

The fast equilibria S1 ¼ Uðt; IÞ, such that Fðt;UðIÞ; IÞ ¼ 0, are

Uðt; IÞ ¼ m2ðtÞ
m1ðtÞ þ m2ðtÞ

ðN � IÞ ¼ lðtÞðN � IÞ; ð13Þ

where we call lðtÞ ¼ m2ðtÞ=ðm1ðtÞ þ m2ðtÞÞ, which represents the periodic long-

term proportion of susceptible individuals in patch 1.

Taking t and I as constant and calculating the derivative of F with respect to S1

we obtain

JS1
Fðt;UðIÞ; IÞ ¼ �m1ðtÞ � m2ðtÞ\0 for any t and I:

This last condition is needed to ensure that hypothesis 2 of theorem 1 is met. It is

also necessary, in the last part of theorem, to know the domain of attraction of the

fast equilibria. Having in mind that the equation

dS1

ds
¼ �m1ðt0ÞS1 þ m2ðt0ÞðN � I0 � S1Þ;

for constant t0 and I0, is linear in S1, it is straightforward that the required domain of

attraction is ð�1;1Þ.
The next step, to deal with hypothesis 3 of theorem 1, is to construct the reduced

system (6). For that we substitute S1 in the second equation of the system (12) by the

corresponding fast equilibria:

dI

dt
¼ bðtÞ N � I � lðtÞðN � IÞð ÞI � cðtÞI;

that can also be expressed in the following form
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dI

dt
¼ bðtÞð1� lðtÞÞN � cðtÞð ÞI � bðtÞð1� lðtÞÞI2: ð14Þ

This equation is known as the periodic Bernoulli equation and has received much

attention in the literature (Thieme 2003; Martcheva 2009). To apply theorem 1 we

need to find asymptotically stable periodic solutions of equation (14). For that, we

follow Martcheva (2009) and define

\bð1� lÞ[ ¼ 1

x

Zx

0

bðtÞð1� lðtÞÞdt and \c[ ¼ 1

x

Zx

0

cðtÞdt;

and from them the next dimensionless quantity that plays de role of basic repro-

ductive number R0 for the disease in system (12):

R0 ¼
\bð1� lÞ[

\c[
N: ð15Þ

We then have that R0\1 implies [Martcheva (2009), Prop. 2.2] that the disease-free

equilibrium I� ¼ 0 is globally asymptotically stable and if R0 [ 1 then [Martcheva

(2009), Th. 3.1] there exists a unique positive periodic function IpðtÞ which attracts

every solution of Eq. (14) with a positive initial value.

Applying theorem 1 we obtain the asymptotic behaviour of solutions of the

system (12) in terms of R0.

Theorem 3 Let Se
1ðtÞ; IeðtÞ

� �
be the solution of system (12) with initial values

S1ðt0Þ� 0 and Iðt0Þ[ 0. Then, for any d[ 0, there exist ed [ 0 and td [ t0 such

that, for every e� ed and every t� td,

1. If R0\1

Se
1ðtÞ; IeðtÞ

� �
� lðtÞN; 0ð Þ

�
�

�
�\d:

2. If R0 [ 1

Se
1ðtÞ; IeðtÞ

� �
� lðtÞðN � IpðtÞÞ; IpðtÞ
� ��

�
�
�\d:

R0 incorporates the information of the fast dynamics, displacements between patches,

through the fraction of susceptible individuals 1� lðtÞ staying in patch 2. Thus, theorem

3 summarizes the influence of migration rates on the outcome of the epidemic process,

what could be useful for managing decisions as, for instance, quarantine measures.

In Fig. 1 there is a numerical example comparing the solution of the complete

system (12) with the approximation obtained through the reduced system (14) with a

time scale ratio e ¼ 0:1.

3.2 Case of Asymptotically Autonomous Rates

In this section we consider the system (11) expressed in terms of the fast time

variable. We analyze two different cases, the first one with mass action incidence
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function and the second one with proportional incidence. In both cases we assume

positive asymptotically autonomous rates.

– Mass action incidence function

The corresponding system is:

dS1

ds
¼ �m1ðsÞS1 þ m2ðsÞðN � I � S1Þ;

dI

ds
¼ e bðsÞðN � I � S1ÞI � cðsÞIð Þ;

8
><

>:
ð16Þ

where all rates are supposed to have limit when s!1, hence yielding an

asymptotically autonomous system of the form (7). For further purposes, we note

�z :¼ lim
s!1

zðsÞ; zðsÞ 2 m1ðsÞ; m2ðsÞ; bðsÞ; cðsÞf g: ð17Þ

The asymptotic stability of the different rates can be interpreted as the fact that

health authorities can modify displacement rates rapidly as well as salubrity con-

ditions by implementing prophylaxis procedures in a rather short period of time.

We now apply theorem 2 to study the system (16).

We have

�FðS1; IÞ ¼ � �m1S1 þ �m2ðN � I � S1Þ and SðS1; IÞ ¼ bðN� I� S1ÞI� cI:

The fast equilibria S1 ¼ UðIÞ are

UðIÞ ¼ �m2

�m1 þ �m2

ðN � IÞ ¼ lðN � IÞ; ð18Þ

where l ¼ �m2=ð �m1 þ �m2Þ is the long-term proportion of susceptible individuals in

patch 1.

In this case JS1
�FðUðIÞ; IÞ ¼ � �m1 � �m2\0 and the domain of attraction of the

equilibrium UðIÞ in equation dS1=ds ¼ �m1ðsÞS1 þ m2ðsÞðN � I � S1Þ is

ð�1;1Þ.
The reduced system (8) for system (16) is

dI

dt
¼ �bðN � I � lðN � IÞÞI � �cI;

that can be written in logistic form

dI

dt
¼ �bð1� lÞN � �c
� �

I 1� I

N � �c=ð�bð1� lÞÞ

� �

: ð19Þ

This equation possesses an asymptotically stable equilibrium I� which domain of

attraction includes every positive initial value. The equilibrium I� can be either 0 or

N � �c=ð�bð1� lÞÞ depending on the latter being negative or positive. Equivalently,

this condition can be expressed in terms of the next dimensionless quantity that

could be taken as the basic reproductive number R0 for the disease in system (16):
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R0 ¼
�bð1� lÞ

�c
N: ð20Þ

If R0\1 the infection dies out and thus I� ¼ 0 , the disease-free equilibrium. On the

other hand, if R0 [ 1 the infection persists and I� ¼ N � �c=ð�bð1� lÞÞ is then the

so-called endemic equilibrium.

We can now conclude from theorem 2 the following analysis of the asymptotic

behaviour of solutions of system (16) in terms of R0.

Theorem 4 Let Se
1ðtÞ; IeðtÞ

� �
, t ¼ es, be the solution of system (16) with initial

values S1ðt0Þ� 0 and Iðt0Þ[ 0. Then, for any d[ 0, there exist ed [ 0 and td [ t0

such that

Se
1ðtÞ; IeðtÞ

� �
� lðN � I�Þ; I�ð Þ

�
�

�
�\d;

Fig. 1 Comparison of the solution ðS1ðtÞ; IðtÞÞ of the complete system (12), e ¼ 0:1 and
ðS1ð0Þ; Ið0ÞÞ ¼ ð600; 50Þ, with ðlðtÞðN � IðtÞÞ; IðtÞÞ where IðtÞ is the solution of the reduced system

(14), Ið0Þ ¼ 50. The total population: N ¼ 1000. The migrations rates: m1ðtÞ ¼ 2þ sinð2
3
ptÞ and

m2ðtÞ ¼ 3
2
þ 1

2
cosð2ptÞ. The transmission rate: bðtÞ ¼ 0:004ð1þ 1

2
sinð2ptÞÞ. The recovery rate:

cðtÞ ¼ 2ð1� 1
2

sinð2ptÞÞ. The basic reproductive number (15) is R0 ¼ 1:2263611
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e� ed and every t� td, where:

1. I� ¼ 0 if R0\1.

2. I� ¼ N 1� 1

R0

� �

if R0 [ 1.

As in the periodic theorem 4 summarizes the influence of migration rates on the

outcome of the epidemic process.

In Fig. 2 there is a numerical example showing that the solution of the complete

system (16) approaches the equilibrium point predicted by the reduced system (19).

– Proportional incidence

In this case the corresponding system is:

dS1

ds
¼ �m1ðsÞS1 þ m2ðsÞðN � I � S1Þ;

dI

ds
¼ e bðsÞ ðN � I � S1ÞI

N � S1

� cðsÞI
� �

:

8
>><

>>:

ð21Þ

We keep the notation (17). In order to apply theorem 2 to study the system (21) we

notice that its fast part coincides with that of system (16). Thus, we have the same

fast equilibria S1 ¼ UðIÞ ¼ ð �m2=ð �m1 þ �m2ÞÞðN � IÞ ¼ lðN � IÞ, which are glob-

ally asymptotically stable.

The corresponding reduced system (8) for system (21) is

dI

dt
¼ �b
ðN � I � lðN � IÞÞI

N � lðN � IÞ � �cI;

that can also be written as

dI

dt
¼

�bð1� lÞðN � IÞ
ð1� lÞN þ lI

� �c

� �

I: ð22Þ

This equation also possesses two equilibria:

I�1 ¼ 0 and I�2 ¼
ðb� cÞð1� lÞ
bð1� lÞ þ cl

N:

The disease-free equilibrium I�1 ¼ 0 is asymptotically stable whenever �b\�c. In the

opposite case, �b [ �c, the equilibrium I�2 is positive and asymptotically stable and

thus it becomes the endemic equilibrium.

The condition to distinguish between disease eradication or endemicity can be

expressed in terms of the following basic reproductive number R0 for system (21):

R0 ¼
�b
�c
: ð23Þ

The asymptotic behaviour of solutions of system (21) are summarized in the next

theorem, which is analogous to theorem 4.
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Theorem 5 Let Se
1ðtÞ; IeðtÞ

� �
, t ¼ es, be the solution of system (21) with initial

values S1ðt0Þ� 0 and Iðt0Þ[ 0. Then, for any d[ 0, there exist ed [ 0 and td [ t0

such that

Se
1ðtÞ; IeðtÞ

� �
� lðN � I�Þ; I�ð Þ

�
�

�
�\d;

e� ed and every t� td, where:

1. I� ¼ 0 if R0\1.

2. I� ¼ N 1� 1

ð1� lÞR0 þ l

� �

if R0 [ 1.

We notice that, in this case, displacements of susceptible individuals play no

role in the long-term behaviour of the disease. It is the ratio of transmission rate to

recovery rate in patch 2 which decides between disease eradication and

endemicity. Proportional incidence is adequate for large populations or low

incidence rates. In those cases the existence of two patches joined by fast

displacements has no crucial effect on the disease evolution. Its influence appears

just in the number of infective individuals. Interpreting patch 2 as a quarantine

area, managing efforts should be put in reducing the transmission or the mean

recovery time in this area. Acting on the numbers of individuals out of the

quarantine area would be useless.

In Fig. 3 there is a numerical example showing that the solution of the

complete system (21) approaches the equilibrium point predicted by the reduced

system (22).

Fig. 2 Solution ðS1ðtÞ; IðtÞÞ of the complete system (16), e ¼ 0:1 and ðS1ð0Þ; Ið0ÞÞ ¼ ð600; 50Þ. The total

population: N ¼ 1000. The migrations rates: m1ðtÞ ¼ 2þ e�0:1t sinð2
3
ptÞ and

m2ðtÞ ¼ 3
2
þ 1

2
e�0:5t cosð2ptÞ. The transmission rate: bðtÞ ¼ 0:004ð1þ 1

2
e�0:3t sinð2ptÞÞ. The recovery

rate: cðtÞ ¼ 2ð1� 1
2

e�0:2t sinð2ptÞÞ. The basic reproductive number (20) is R0 ¼ 8
7
. The asymptotic

behaviour of the solution is well described by the equilibrium obtained through the reduced system (19):
I� ¼ 125 and S�1 ¼ lðN � I�Þ ¼ 375
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4 Discussion and Conclusions

In this work it is reviewed how to apply the results on singular perturbations on

unbounded intervals, developed in Hoppensteadt (1966), to some slow-fast

population dynamics models. The first step in the application of these results is

setting the system of ordinary differential equations into the slow-fast form, that is,

making emerge the slow variables, those not affected by the fast the dynamics. This

allows, under certain hypotheses, to carry out the analysis of the asymptotic

behavior of the solutions of the system in two steps corresponding roughly to its fast

and slow parts. Concerning the first one, the asymptotically stable equilibria of the

fast part of the system are found in terms of time t and the slow variables. For the

slow part a reduced system is obtained by substituting the non slow variables by

their corresponding equilibria. The asymptotic behaviour of this reduced system

together with the fast equilibria allows to describe the asymptotic behavior of the

initial system.

The presented reduction procedure justify on theoretical grounds what is a

frequent practice: decoupling processes that act at different time scales though they

are certainly coupled. The precise assumptions to be met, in order to ensure that the

whole procedure is justified, are collected in theorem 6 following Hoppensteadt

(2010) and adapted in theorems 1 and 2 to two special situations in population

dynamics: environments changing periodically and environments tending to

stabilization. Hypotheses 3 and 4 of theorem 6 are difficult to check because the

required asymptotic stabilities must be uniform. In theorems 1 and 2 the condition to

met hypothesis 3 is just expressed in terms of the sign of the real parts of the

eigenvalues of a Jacobian matrix, the uniformity being always met as well as in the

asymptotic stability of the solution of the reduced system involved in hypothesis 4.

Fig. 3 Solution ðS1ðtÞ; IðtÞÞ of the complete system (21), e ¼ 0:1 and ðS1ð0Þ; Ið0ÞÞ ¼ ð600; 50Þ. The total

population: N ¼ 1000. The migrations rates: m1ðtÞ ¼ 2þ e�0:1t sinð2
3
ptÞ and

m2ðtÞ ¼ 3
2
þ 1

2
e�0:5t cosð2ptÞ. The transmission rate: bðtÞ ¼ 5

2
þ 1

2
e�0:3t sinð2ptÞÞ. The recovery rate:

cðtÞ ¼ 2ð1� 1
2

e�0:2t sinð2ptÞÞ. The basic reproductive number (23) is R0 ¼ 1:2. The asymptotic

behaviour of the solution is well described by the equilibrium obtained through the reduced system
(22): I� ¼ 125 and S�1 ¼ lðN � I�Þ ¼ 375
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Similar results to theorems 1 and 2 have been already used in applications. In

Marvá et al. (2012c) a predator-prey model with a prey refuge and slowly varying

periodic coefficients is analyzed essentially following the reduction procedure

summarize in theorem 1. Two other works, Marvá et al. (2012a, b), considering

spatially distributed epidemic models with periodic coefficients are treated in an

analogous form. On the other hand, a couple of gradostat models with asymptot-

ically autonomous coefficients are analyzed in Marvá et al. (2013) applying the

reduction technique described in theorem 2.

In this work, to illustrate the proposed reduction procedure by applying both

theorems 1 and 2 we have chosen a simple application: a SIS epidemic model

together with fast migrations between two different patches. It is about the simplest

situation that contains all the required characteristics and still might have an interest

as application in itself. Based upon the same model three cases are treated. In the

first one, with mass action incidence function, all rates are considered periodic

whereas in the other two are assumed asymptotically autonomous, one also with

mass action incidence function and the other with proportional incidence.

In all the three cases the reduction procedure yields a basic reproductive numbers

R0 that ensures the disease eradication when being less than one and its endemicity

if larger. In the periodic case the endemicity is determined by an asymptotically

stable periodic solution of the reduced system. In both asymptotically autonomous

cases the endemicity situation leads to a steady state. In these R0 are summarized the

join effects of the disease and the displacements of susceptible individuals between

patches. From the point of view of disease management once the local

epidemiological and demographic parameters are estimated, a control of epidemics

can be considered by an adequately acting on individual displacements.

As mentioned in the introduction, the reduction procedure can be considered as

an approximate aggregation method for nonautonomous ordinary differential

equations. Having in mind the large number of interesting applications in the

literature that are based upon the aggregation methods for autonomous differential

equations Auger et al. (2008a, 2012) we do expect the procedure to be further

developed and applied to more realistic models.

Acknowledgments Authors are partially supported by Ministerio de Ciencia e Innovación (Spain),

projects MTM2011-24321 and MTM2011-25238.

Appendix

We summarize in the next theorem the results on singular perturbations methods for

slow-fast dynamics on the infinite interval as presented for the first time in the work

of Hoppensteadt (1966), that the author subsequently included in a more readable

way in reviews of differential equations with small parameters and quasi-static state

analysis of differential equations (Hoppensteadt 1971, 1993, 2010). In Verhulst

(2007) it is found a review of singular perturbation methods for slow-fast systems

where they are mentioned some other works, notably by Tikhonov et al. (1985), that
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preceded those of Hoppensteadt though for bounded intervals of time. It is also

found in Verhulst (2007) the peculiarities of this theory applied to autonomous

equations following the works by Fenichel (1971).

Theorem 6 Let us consider the initial-value problem

e
dx

dt
¼ f ðt; x; y; eÞ; xðt0Þ ¼ x0;

dy

dt
¼ gðt; x; y; eÞ; yðt0Þ ¼ y0;

8
><

>:
ð24Þ

where x 2 R
n, y 2 R

m and e is a small positive parameter. We call X̂ ¼ X� ½0; e0�
where X ¼ I � BR � BR0 , I ¼ ½t0;1g, BR ¼ fx 2 R

n : jxj �Rg, BR0 ¼ fy 2 R
m :

jyj �R0g and e0 is a positive constant. Balls BR and BR0 could be replaced by any

sets that are diffeomorphic to them.

Hypothesis H1. f ; g 2 C2ðX̂Þ and the solutions of the system (24) beginning in

BR � BR0 remains there for t 2 I.

Hypothesis H2. There is a function x ¼ Uðt; yÞ 2 C2 such that f ðt;Uðt; yÞ; y; 0Þ ¼
0 for ðt; yÞ 2 I � BR0 .

Hypothesis H3. x ¼ Uðt; yÞ is an asymptotically stable equilibrium of the system
dx

ds
¼ f ðt; x; y; 0Þ uniformly in ðt; yÞ 2 I � BR0 and x0 is in the domain of attraction

of Uðt0; y0Þ.
Hypothesis H4. The system of equations d�y=dt ¼ gðt;Uðt; �yÞ; �y; 0Þ has an

uniformly asymptotically stable solution y�ðtÞ for t0� t\1 and y0 is in its

domain of attraction.

Then if �yðtÞ is the solution of

d�y=dt ¼ gðt;Uðt; �yÞ; �y; 0Þ; �yðt0Þ ¼ y0;

for sufficiently small values of e the solution ðxðtÞ; yðtÞÞ of the system (24) satisfies

xðtÞ ¼ Uðt; �yðtÞÞ þ oð1Þ; yðtÞ ¼ �yðtÞ þ oð1Þ;

as e! 0þ uniformly on any interval of the form t0\t1� t\1.
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