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Abstract 

In this paper, we provide a method for building up a strictly positive 
supersolution for the steady state of a degenerated logistic equation 
type, i.e., when the weight function vanishes on the boundary of the 
domain. This degenerated system is related in obtaining the so-called 
large solutions. Previously, this problem was handled as the limit case 
of non degenerated approaching problems. Our method can be adapted 
straightforwardly to degenerated boundary value problems. 

1. Introduction 

In this paper, we show how to build up a positive strict supersolution to 
the boundary value problem: 
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where ( [ )),,0; ∞+Ω∈ μCa  ( ),; RΩ∈ μCm  ( ),1,0∈μ  0≡a  on ,Ω∂  

( [ ))∞+Ω∂∈ μ+ ,0;1Cg  is such that ,0≥g  ,0≡/g  ( ×Ω∈ μ+μ 1,Cf  
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[ ) ),;,0 R∞+  ( ) ,00, =xf  ( ) ,0, >uxf  ( ) 0, >∂ uxfu  and ∞+klim  

( ) +∞=k
kuxf ,  for each 0>u  uniformly in .Ω∈x  The set NR⊂Ω  is a 

bounded domain with Ω∂  of class .2C  

Problem (1) ( )1with ≡m  stands for the steady states of the generalized 

logistic growth law [13]. Typically, u stands for the distribution in Ω of 
individuals of certain species, λ stands for the net growth rate of u modulated 
by ( ),xm  ( )xa  simulates demography pressure and, along with ( ),xm  

environmental heterogeneity. When 0≡a  somewhere, model (1) 
( )1with ≡m  becomes a Malthusian model in the region { ;:0 Ω∈=Ω x  

( ) },0=xa  known as refuge. We deal with the case 0≡a  on ,Ω∂  but it 

could be adapted to apply in the general case when ∅≠Ω0  and .0 Ω⊂Ω  

In addition, solving problem (1) is an intermediate step to prove the 
existence of large solutions related to problem (1), i.e., a function 

( )Ω∈ ν,2Cu  such that 
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see [11]. Large solutions come across from studies concerning combustion 
due to Keller [9] and Osserman [14]. In fact, there are available uniqueness 
results for problem (2) ([3], [5], [12] and references therein). As long as we 
know, problem (1) has been handled as the limit case of non degenerated 
approaching problems. 

If we restrict ourselves in problem (1) to ( ) 0>γ≥xa  on ,Ω  it is easy 

to show that there exists 0>ε  small enough such that εϕ  is a positive 

subsolution to problem (1), being ϕ  the principal eigenfunction of Δ−  in  

Ω  under homogeneous Dirichlet boundary conditions. In this case a positive 
constant K such that 
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provides us with a supersolution to problem (1). Now, enlarging K if 
necessary, we get an ordered pair ( )K,εϕ  of sub-supersolution. Thanks to a 

Theorem by Amann [1], there exists a solution to problem (1) between εϕ  

and K. Unfortunately, as soon as we let 0=a  somewhere in ,Ω  we lose 
condition (3), so it is needed something different from a constant to get a 
supersolution to problem (1). Different strategies have been used to avoid 
this problem: some authors approximate Ω  by ( ){ Ω∂Ω∈=Ω ,dist;: xxn  

}n1>  (for each n ( )xa  is uniformly bounded away from 0 in ,nΩ  that is 

,0>γ≥a  see [4] and [11]), and others approach ( )xa  by means of ( ),1 xan +  

essentially in order to avoid condition 0≡a  on Ω∂  and to generate a 
sequence of solutions of approximate problems converging to a solution to 
problem (1), see [2] and [8]. 

2. Results 

The result we present here allows us to obtain via sub and supersolution 
the existence of a solution to (1). Actually, the construction of the 
supersolution in Ω  follows from an extension of the Faber [6] and Krahn [7] 
inequality due to López-Gómez [10] which provides us with a lower estimate 
for the main eigenvalue to Δ−  on the domain D: 
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≥Δ−σ  (4) 

where ( ) { },1;:01 ≤∈= xxB NR  ( )[ ]0, 11 BΔ−σ  is the principal eigenvalue 
of Δ−  on ( )01B  and D  stands for the Lebesgue’s measure of D. 

Theorem 2.1. Consider the boundary value problem (1). Then, for each 
,R∈λ  there exists an ordered pair ( )uu,  consisting of a subsolution and a 

positive strict supersolution, where ( ) ( ) .Ω∈∀< xxuxu  
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Proof. Let us define 

{ ( ) } [ ],,:,,dist;: εεε Δ−σ=σε<Ω∂∈= OxxO NR  

where, keeping in mind (4), for a fixed R∈λ  we can choose 0>ε  such 
that 

( ){ } .max ε
Ω∈

σ<λ xm
x

 

Let εϕo  be the principal eigenfunction of Δ−  under homogeneous 

boundary conditions on .εO  We define 
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where 0>τ≥Ψ  is any regular enough function such that ( ).2 Ω∈Φ C  We 

are looking for the existence of a constant ,0>K  large enough, such that 

function 

Φ= Ku :  

is a strict positive supersolution to problem (1). 

We estimate now K on .2εΩ O∩  Keeping in mind that ( ) 0≥xa  and 

,εϕ=Φ oKK  it must be 
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In the interior of the domain it should happen 

( ) ( ),, εεε ϕ−ϕλ≥ϕΔ− ooo KxafmKK  

which is equivalent to 

( )εεε
ε ϕ−ϕλ≥ϕσ ooo KxafmKK ,  
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by the definition of .εϕo  Rearranging terms we get 

( ) ( ),, ε
εε σ−λϕ≥ϕ mKKxaf oo  (5) 

where the left hand side is non negative and the right one is strictly negative 
because of the selection of .ε  Therefore, (5) is a proper inequality .0>∀K  

By construction, on the boundary we have 0, >|ϕ Ω∂
ε go  and therefore, 

whenever 
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the boundary condition is satisfied (with strict inequality). 

In the domain 2εΩ  it should be verified 

( ) ( )Ψ−Ψλ≥ΔΨ− KxafmKK ,  (7) 

rearranging terms, expression (7) is equivalent to 
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As ( ) ,0 2εΩ∈∀> xxa  function a
mΨλ+ΔΨ  reaches its maximum 

(provided  a regular ).Ψ  By hypothesis on f, there exists 0K  such that 

0KK >∀  condition (8) holds. Thus, there exists 0>K  such that function 

ΦK  is a strict positive supersolution to (1). Function 0:=u  is a subsolution 

to problem (1), and ( ) ( ) .Ω∈∀< xxuxu   

Corollary 2.2. For each ,R∈λ  problem (1) has a unique positive 
solution. 

Proof. Since we have an ordered pair formed by a subsolution and a 
supersolution, a theorem due to Amann [1] guaranties the existence of a 
solution u to problem (1) such that .0 Ψ≤≤ Ku  Uniqueness follows, for 

instance, from [11].  
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