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a b s t r a c t

In this work, we study a nonlinear two time scales discrete competition model. Specifically, we deal
with a spatially distributed Leslie–Gower competition model with fast dispersal. After building up the
corresponding two time scales model, we have used approximate aggregation techniques to derive a
lower dimensional, reduced system. When the ratio between time scales is large enough, the aggregated
system can be used to analyze the two time scales model.

As a result, we have found trade-off mechanisms between fast dispersal and competition under spatial
homogeneity conditions. When the environment is heterogeneous, we have found that under asymmet-
ric dispersal, whether competitive coexistence or competitive exclusion occurs depends on the initial
population sizes of the two species.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

The analysis of the mechanisms underlying coexistence in
patchy environments is an important issue in theoretical ecology
(Levins, 1969, 1970; Levin, 1992). Essentially, species competition
and individuals dispersal are taken into account and the interest
relies on the interplay between both processes.

One of its paradigms, the Patch Occupancy Metapopulation
Theory (POT) (Hanski, 1999), explores population persistence and
species coexistence in patchy landscapes using the competition-
colonization trade-off as its basis. The POT focuses on the presence
of local populations in habitat patches and it does not include any
description of local dynamics. The POT implicitly recognizes that
competition operates at a much faster time scale than colonization-
extinction processes. All these assumptions preclude, in fact, local
coexistence and imply that migration cannot influence local com-
petitive interactions. The POT and its predictions are, nevertheless,
at odds with some empirical data (Lei and Hanski, 1998) due to the
implicit separation of time scales.

In Amarasekare and Nisbet (2001) it is set up a metapopulation
model considering dispersal and competition within the same time
scale. Under this assumption, the authors shown that in a spatially
homogeneous competitive environment differences in species dis-
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persal are not enough to explain coexistence with the absence of a
refuge for the weaker competitor. Besides, they considered spatial
heterogeneity either by allowing for species refuges or by assum-
ing variations in competitive rankings over space such that the
superior competitor in some parts of the landscape becomes the
inferior competitor in the remnant landscape. The heterogeneity is
concreted in spatial variance in fitness that leads to a source-sink
dynamics framework enabling coexistence.

Finally, the puzzle was completed in Nguyen Ngoc et al. (2010)
where dispersal was assumed to be much faster that competition.
Under these settings, the authors shown that there is a trade-off
between fast dispersal and competition when the environment is
homogeneous. In particular, appropriate dispersal rates may allow
the weaker competitor to survive and even to exclude the stronger
competitor.

The approaches presented in Hanski (1999) and Nguyen Ngoc
et al. (2010) share the feature that competition and dispersion occur
at different time scales. Understanding how ecological phenomena
interact across temporal scales is crucial in theoretical ecology
(Levin, 1992; Leibold et al., 2004), since it is known that differ-
ences in process time scales may be critical for system dynamical
behaviour (Ludwig et al., 1978; Leibold et al., 2004; Lett et al., 2005).

The aim of this work is to analyze the interplay of species com-
petition and fast individuals dispersal in a metapopulation, in the
sense that we seek trade-off mechanism between these two pro-
cesses related to species coexistence. We also study the role of
spatial heterogeneity in the aforementioned compensation mecha-
nism. Here, we focus on the impact of dispersal on local populations
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with discrete non-overlapping generations. This situation can be
found in a range of evolutionary and ecological processes in which
gene flow and dispersal rate due to non sedentary habits can
operate at a fast scale relative to selection or population inter-
action processes (Nguyen Ngoc et al., 2010). The corresponding
mathematical models adopt the form of systems of difference equa-
tions (Yakubu and Castillo-Chávez, 2002). The study of the role
of dispersal in continuous-time metapopulation models is exten-
sive (Levin, 1992; Amarasekare, 2003; Bowne and Bowers, 2004;
Nguyen Ngoc et al., 2010).

The paradigms of competition models are the Lotka–Volterra
model in the continuous case and the Leslie–Gower model (Leslie
and Gower, 1958) in the discrete case. The latter played a funda-
mental role in laboratory experiments with the flour beetle (of the
genus Tribolium) that give rise to the competitive exclusion princi-
ple that is one of the important tenets in ecology (Park, 1948, 1954,
1957; Park et al., 1964; Leslie and Gower, 1958). The Leslie–Gower
model consists of two Beverton–Holt equations with the adding of
the interspecific competition.

The proposed model considers two competing species inhab-
iting an environment consisting of p different patches. The model
couples local Leslie–Gower competition dynamics with linear (con-
stant rates) individuals dispersal between patches. Dispersal is
assumed to be faster than competition, which yields a system of
2p difference equations with two time scales. Taking advantage of
the time scales separation the system can be studied in terms of a
two dimensional system for the total densities of the two species.
This reduction is performed with the help of the so-called approx-
imate aggregation of variable technique (Auger et al., 2008; Bravo
de la Parra et al., 2013). The form of the reduced system is that of a
discrete competition model different from the Leslie–Gower model
and with a richer dynamics.

The Leslie–Gower model exhibits the same dynamics (Cushing
et al., 2004; Liu and Elaydi, 2001) than the Lotka–Volterra model.
Weak species competition leads to a coexistence equilibrium state
while strong species competition makes competitive exclusion to
occur: which species gets extinct either depends on priority effects
(the excluded species depend on the initial amount of individuals,
the species that gains an early advantage wins) or do not. The labo-
ratory results with the flour beetle where mostly supported by the
Leslie–Gower competition model. Nevertheless, data from one of
those experiments was at odds with this model, since in this exper-
iment whether competitive coexistence occurred or competitive
exclusion occurred depended on the initial population numbers
of the two species (Cushing et al., 2004). In Cushing et al. (2004,
2007) an explanation to this data is proposed in terms of an age
structured population model by introducing a Ricker-type nonlin-
earity and found multiple mixed-type attractors. Instead, the model
that we propose keeps as local dynamics the simple Leslie–Gower
model but we find that together with fast dispersal there exist sce-
narios displaying multiple equilibrium attractors that compatible
with the data observed in the experiments with the flour beetle and
are different from those displayed in Cushing et al. (2004, 2007) (see
Section 4).

This work is organized as follows: in Section 2 we set up a
slow-fast Leslie–Gower spatially distributed competition model.
The habitat consists of p patches and there individuals dispersal.
The system consists of 2p equations and we sketch both a dimen-
sion reduction procedure as well as the kind of information that
produces. Section 3 is devoted to the analysis of the reduced sys-
tem. We derive general conditions for species viability, species
coexistence or species extinction. Nevertheless, under the most
general settings, the model depends on so many parameters to
perform a complete analysis. In Section 3.1, we deal with the
important case of an a 2 patches environment. In this case we
show that fast dispersal in heterogeneous environments may

lead to scenarios with two and even three stable equilibrium
points (bi-stability and tri-stability), while it is not possible if both
patches are homogeneous. Besides, we highlight a trade-off mecha-
nism between dispersal and competition. We discuss the previous
results in Sections 4 and 5 contains the conclusions of this work.
Appendix A devoted to prove the mathematical results completes
the manuscript.

2. Methods

In this section we set up a difference equation (discrete time)
model that accounts species competition along with fast dispersal.
After building the slow fast model, the separation of time scales
allows us to apply the results sketched in Appendix A and get a
less dimensional system. The section finishes with a result which
describes which kind of information about the slow fast system can
be retrieved from the reduced system.

2.1. Presentation of the model

We consider two competing species inhabiting an environment
divided into p patches. Let nj

i
(t) be the number of individuals of

species i = 1, 2 in patch j = 1, . . ., p at time t. We denote Ni(t) =
(n1
i
(t), n2

i
(t), . . ., np

i
(t)), the spatial distribution of individuals of

each species and the population vector

N(t) = (N1(t),N2(t))T ,

where the superscript T stands for transposition. We assume that
individual displacements between patches are faster than the local
community dynamics. Following Appendix A both processes, dis-
persal and local dynamics, are represented by two mappings F (for
fast) and S (for slow), respectively. The time unit of the system
is that of the slow process and the effect of the fast dynamics is
represented by the kth iterate of mapping F, F(k), with k being an
approximation of the time scales ratio. Thus, we set the so called
complete system that combines both processes, fast and slow, and
that reads as follows:

N(t + 1) = S(F (k)(N(t))) (1)

Next, we explicitly define the mappings F and S.
We assume that dispersal rates are constant and we denote

f rs
i

the fraction of individuals of species i moving from patch s to
patch r. Gathering these coefficients we define the dispersal matri-
ces Fi = (f rs

i
), i = 1, 2, that are stochastic. For further purposes, we

also assume that they are regular. The definition of mapping F rep-
resenting dispersal is thus

F(N) =
(

F1 0

0 F2

)(
NT1

NT2

)
= FN (2)

The local species competition in each patch j = 1, · · · , p is represented
by the Leslie–Gower model (Cushing et al., 2004). If nj1 and nj2 are
the number of individuals of both species in patch j, after a time
unit they become, respectively⎧⎪⎪⎪⎨
⎪⎪⎪⎩

bj1

1 + cj11n
j
1 + cj12n

j
1

nj1 = sj1(nj1, n
j
2),

bj2

1 + cj21n
j
2 + cj22n

j
2

nj2 = sj2(nj1, n
j
2),

where bj
i

is the intrinsic growth rate of species i in patch j (that
is, the growth rate without taken into account density dependent
effects) and cjrs measures the competitive effect of species s on
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species r in patch j. Growth rate in the absence of the other com-
petitor Denoting Si(N(t)) = (s1

i
(n1

1, n
1
2), . . ., sp

i
(np1, n

p
2)) the mapping

S representing the local dynamics is defined by

S(N) = (S1(N), S2(N))T (3)

Summing up, it the complete system (1) (F (k)(N(t))) = S(FkN(t)).

2.2. Reduction of the model

We use the method described in Appendix A to reduce the sys-
tem (1). The procedure follows from the usual assumption for slow
fast system that fast dynamics attains an stable equilibrium state
“instantaneously” fast, which is equivalent to assume that the ratio
between time scales, k, is large. Mathematically, the fact that Fi are
regular and stochastic means (Seneta, 1981) that, associated to the
eigenvalue 1, there exist positive eigenvectors vi = (vi1, . . ., vip) and
1 = (1, . . .,1) ∈ Rp such that 1vT

i
= 1 and such that

lim
k→∞

Fki = vTi 1. (4)

The vector vi represents the stable distribution of individuals of
species i among the p different patches, that is, the dispersal process
drives both species to attain stable distributions given by vi at the
fast time scale. From (4) it is straightforward that

lim
k→∞

FkN =
(

vT11NT1

vT21NT2

)
= F̄N,

where F̄ is that in Hypothesis A.1 and N(t + 1) = S
(
F̄ (N(t))

)
is the

auxiliary system (13) in Appendix A which approaches the com-
plete system (1) for k large enough. The dimension reduction is
possible provided a suitable decomposition F̄ = E ◦ G as prescribed
in Hypothesis A.2, which is fulfilled by defining

G(N) =
(

1 0

0 1

)
N =

⎛
⎝ p∑

j=1

nj1,

p∑
j=1

nj2

⎞
⎠
T

,

E(y1, y2) = (v1y1,v2y2)T

The existence of the mapping G is equivalent to the existence of
the so-called global variables of the system, that are constant for
the fast dynamics and become the state variables of the reduced
system. In this case, the global variables are the total number of
individuals of each species that, obviously, do not change with
dispersal and we denote them yi =

∑p
j=1n

j
i
, i = 1, 2. The mapping

E describes the asymptotic distribution of individuals between
regions. Note that the equilibria of fast dynamics depend on the
global variables and the stable distributions of individuals of each
species among the p different patches.

With the help of mappings G and E we can build up the aggre-
gated system (14) for the global variables, which reads as follows{
y1(t + 1) = f1(y1(t), y2(t)),

y2(t + 1) = f2(y1(t), y2(t)).
(5)

where

f1(y1(t), y2(t)) =
p∑
j=1

bj1v1jy1(t)

1 + cj11v1jy1(t) + cj12v2jy2(t)
:= �1(y1(t), y2(t))y1(t),

f2(y1(t), y2(t)) =
p∑
j=1

bj2v2jy2(t)

1 + cj21v1jy1(t) + cj22v2jy2(t)
:= �2(y1(t), y2(t))y2(t).

(6)

The definition of the mappingF (see Eq. (2)) imply that hypothe-
ses of Theorem A.1 are met. Thus, important features of the

asymptotic behavior of the solutions of system (1) can be stud-
ied through the corresponding analysis of the reduced system (5).
The next result is a contextualized version of the main general
aggregation Theorem A.1 from the Appendix A.

Theorem 2.1. Consider the general model (1). Let Y∗ = (y∗
1, y

∗
2) ∈

[0,∞) × [0,∞) be a hyperbolic equilibrium point of the aggregated
system (5). Then there exists k0 ∈ N such that for each k ≥ k0 there
exists a hyperbolic equilibrium point X∗

k
of system (1) satisfying

lim
k→∞

X∗
k = X∗ = (v1y

∗
1,v2y

∗
2)

where v1 and v2 stand for the asymptotic spatial distribution of indi-
viduals of each due to the dispersal process.

1 If y* is asymptotically stable then X∗
k

is asymptotically stable for each
k ≥ k0, and the basins of attraction of each X∗

k
can be described in

terms of the basins of attraction of Y*.
2 If y* is unstable then X∗

k
is unstable, for each k ≥ k0.

Proof. We have already proved that system (1) fulfills Hypotheses
A.1 and A.2 that lead to Theorem A.1. To prove that limits (15) are
uniform on compact sets, see Sanz et al., 2008, Proposition 3.10. �

Therefore, whenever the time scales ratio is large enough, the
behavior of the complete system (1) can be described in terms of
the equilibrium points (y∗

1, y
∗
2) of the aggregated system (5) and the

asymptotic stable distribution of individuals among patches v1 and
v2. That is, the larger is the time scales ratio, the better the solutions
of the complete system approach (v1y∗

1,v2y∗
2).

3. Results

In this section, we analyze the reduced system (5). In the first
instance, there are three important kind of equilibrium states:
the trivial equilibrium (0,0) ∈ R2, that stands for global extinc-
tion, the semi trivial equilibrium points E∗

1 = (y∗
1,0), E∗

2 = (0, y∗
2) ∈

R
2, y∗

1 /= 0, y∗
2 /= 0 that correspond with the state in which on

species gets extincted and, finally, coexistence equilibrium states of
the form E∗ = (y∗

1, y
∗
2) ∈ R2, y∗

1 /= 0, y∗
2 /= 0. Of course, discrete sys-

tems may exhibit many other long term behavior different from
approaching one of these equilibrium states, including convergence
to periodic states or chaotic orbits. The aim of this section is to
determine which behavior admit the solutions of system 5 and
which are the conditions enabling it.

We prove first that the reduced system (5) is well defined and
that it is competitive (Smith, 1988). This is an important feature
since, as we will see soon, it entails that any solution of the aggre-
gated system converges to an equilibrium state in the form of an
equilibrium point. This fact allows us to take full advantage of The-
orem (2.1). We denote the positive cone by R2+ = (0,∞) × (0,∞).

Proposition 3.1. Consider the aggregated system (5). Then

1 The positive cone as well as (0,∞) × {0}and {0}× (0,∞) are forward
invariant.

2 All solutions in [0, ∞) × [0, ∞) are forward bounded:

y1(t) ≤
p∑
j=1

bj1/c
j
11, y2(t) ≤

p∑
j=1

bj2/c
j
22, for t = 1,2, · · ·

3 The system is competitive, meaning that if

y1 < y
′
1 and y′

2 < y2
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then

f1(y1, y2)< f1(y′
1, y

′
2) and f2(y′

1, y
′
2)< f2(y1, y2).

Proof. It can be easily accomplished by direct calculation. �

It is immediate that (0, 0) is an equilibrium point of system
(5) regardless of the value of the parameters of the model, while
this is not the case of the semi trivial equilibrium points. The
following result relates conditions for global extinction of both
species with conditions that assure the existence of the semi triv-
ial equilibrium points. The key parameter is the global growth rate
of species i, �i(0,0) =

∑p
j vijb

j
i
, that is, the sum of the local growth

rates weighted by the asymptotic distribution of individuals among
patches.

Proposition 3.2. Consider system (5) and �i, the function defined in
(6). Then,

1 The trivial equilibrium is a global attractor if, and only if,�i(0, 0) ≤ 1
for i = 1, 2.

2 For each i = 1, 2, there exists E∗
i

if, and only if,�i(0, 0) > 1. In this case,
y∗
i

is the unique positive value satisfying �i(E∗
i
) = 1.

Proof. See Appendix A.2 �

Corollary 3.3. All solutions of system (5) in [0, ∞) × [0, ∞) converge
eventually to an equilibrium point.

Proof. See Appendix A.2. �

For each species, the existence of the semi trivial equilibrium is
closely related to its ability to survive in the absence of the other
species. The following result establishes that species i can survive
if �i(0, 0) ≤ 1 but �j(0, 0) > 1, with i /= j.

Proposition 3.4. Consider system (5) and �i, the function defined in
(6). Then

1 Species i gets globally extinct if, and only, if �i(0, 0) ≤ 1.
2 Assume that �1(0, 0) > 1 and �2(0, 0) ≤ 1. Then, for any solu-

tion (y1(t), y2(t)) of system (5) such that y1(0) > 0 it follows that
lim
t→∞

(y1(t), y2(t)) = E∗
1.

3 If, instead, �1(0, 0) ≤ 1 and �2(0, 0) > 1 then, for any solution
(y1(t), y2(t)) of system (5) such that y2(0) > 0 it follows that
lim
t→∞

(y1(t), y2(t)) = E∗
2.

Proof. See Appendix A.2 �

Nevertheless, when both species have the potential to survive
(i.e.,�i(0, 0) > 1 for i = 1, 2) the effect of species competition must be
taken into account and condition �i(0, 0) > 1 does not guarantees
anymore that species i will survive. We carry on the analysis by
assuming that �i(0, 0) > 1 for i = 1, 2 and we seek for conditions
leading to either one species exclusion or species coexistence.

Proposition 3.5. Consider system (5) and assume that �i(0, 0) > 1
for i = 1, 2, so that the semi trivial equilibrium points E∗

i
, i = 1, 2, exist.

Then, E∗
i

is locally asymptotically stable if

�j(E
∗
i )< 1, j /= i (7)

and unstable if

�j(E
∗
i )> 1, j /= i. (8)

Proof. It follows from the usual analysis of the eigenvalues of the
corresponding Jacobian matrix. Standard calculations lead to the
desired results just keeping in mind that y∗

i
solves the equation

1 = �i(E∗
i
). �

A direct consequence of Proposition 3.5 is the following

Corollary 3.6. Consider system (5) and assume that �i(0, 0) > 1 for
i = 1, 2. If condition �j(E∗

i
)> 1 holds for i, j = 1, 2j /= i, then there is

species coexistence.

Proof. �

Condition (7) in Proposition 3.5 provides also sufficient condi-
tions for species extinction via priority effects:

Corollary 3.7. Consider system (5) and assume that �i(0, 0) > 1 for
i = 1, 2. If condition�j(E∗

i
)< 1 holds for i, j = 1, 2j /= i, then exist neigh-

borhoods Ui of E∗
i

such that or any initial condition in (yi1(0), yi2(0)) ∈
Ui ∩ R2+ the corresponding solutions (yi1(t), yi2(t)) converges to E∗

i
.

Proof. �

We have found conditions entailing species coexistence and we
already know that any solution converges to an stable equilibrium
state. The focus is now on determine the structure of these stable
states: number, distribution, and so on. Note that the coexistence
states are the positive roots of a system of the form{
P1(y1, y2) = 0,

P2(y1, y2) = 0,

being Pi polynomials on y1 and y2 of degree p, the number of
patches. To our knowledge, there is no general criterion to deter-
mine the number of coexistence states for an arbitrary p ≥ 5 (taking
into account that these polynomials are not general ones, since
there are constrains imposed by Eq. (5)). That fact prevents us
from obtaining general results. Of course, positive solutions can
be numerically calculated for a given a concrete set of parameter
values. It is important to recall that the aggregated model is a 2
dimensional one, so that the stability of the positive equilibrium
points can be easily analyzed, for instance, via linearization.

3.1. Two patches environment

In this section, we set a two patches environment, that is sim-
pler but still meaningful setting. The previous section left open the
door to find multi attractor scenarios and one of the purposes of
this section is to illustrate this fact. The other aim of this section
is to get an insight in the role of fast dispersal in competition on
homogeneous environments.

Note that the aggregated system still depends on 16 parameters,
which makes any try of performing an exhaustive classification
of all the possible outcomes of the model to be beyond the aims
of this work. Therefore, we adopt either a numerical approach to
show the existence of multi attractor scenarios or further “homog-
enizer” assumptions on the coefficients of the system to enable an
analytical approach.

3.1.1. Multi stability results in heterogeneous environments
A serial of numerical experiments yielded, along with the clas-

sic dynamical outcomes, 2 and even 3 attracting equilibrium points.
We display now an example in which whether competitive coex-
istence or competitive exclusion occurs depends on the initial
population sizes of the two species.

Fig. 1 displays the case where the semi trivial equilibrium
E∗

2 = (0, y∗
2) and a positive equilibrium E∗ = (y∗

1, y
∗
2) are locally AS,

whereas the semi trivial equilibrium E∗
1 = (y∗

1,0) is unstable. Then,
species 2 always survives while species 1 may get extinct or may
persist (coexistence) depending on the initial population values.
Symmetric results exchanging the roles of E∗

1and E∗
2 exists.

Instead, Fig. 2 displays a more complex situation. There, both
semi trivial equilibriums E∗

1 = (y∗
1,0) and E∗

2 = (0, y∗
2) and a positive
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Fig. 1. In gray, the nullclines. E1, E5 asymptotically stable equilibrium points. E2, E3 unstable equilibrium points. Each polygonal displays an orbit with initial values at P1,
P2 and P3, respectively. b1

1 = 7, b2
1 = 8.5, b1

2 = 1.5, b2
2 = 5, c1

12 = 5, c2
12 = 4.5, c1

21 = 13, c2
21 = 3.5, v11 = 0.95, v21 = 0.2.

equilibrium E∗ = (y∗
1, y

∗
2) are locally asymptotically stable, while

there are another two unstable positive equilibrium points. In this
case, coexistence or one species exclusion (having quite different
competitive abilities) may arise.

In both cases the outcome depends exclusively on the initial
population values. Note that in both cases the asymmetric distribu-
tion of individuals. It is important to point out that, from extensive
numerical experiments, we have found that for moderate dispersal
rates the aggregated model behaves as the non-spatially distributed
one.

3.1.2. Competition-dispersal trade-off
Now we investigate the net effect of individual displacements

between patches on the outcome of the competition process. Thus,
we set homogeneous conditions among patches, meaning that at
patch j = 1, 2,

bj1 = b1, bj2 = b2 cj11 = 1, cj22 = 1, cj12 = c12, cj21 = c21. (9)

Furthermore, in order to avoid the extinction of both species we
suppose

b1, b2 > 1 (10)

Thus, the aggregated system is⎧⎨
⎩
y1(t + 1) = b1v1y1(t)

1 + v1y1(t) + c12v2y2(t)
+ b1(1 − v1)y1(t)

1 + (1 − v1)y1(t) + c12(1 − v2)y2(t)
,

y2(t + 1) = b2v2y2(t)
1 + c21v1y1(t) + v2y2(t)

+ b2(1 − v2)y2(t)
1 + c21(1 − v1)y1(t) + (1 − v2)y2(t)

(11)

where we have written v1 and v2 instead of v11 and v21,
respectively. In what follows, keeping in mind the aforementioned
homogeneity conditions, we are interested in two questions. On
the one hand, are there multiattractors in a homogeneous envi-
ronment? or, in other words, is spatial heterogeneity a necessary
condition for the existence of multiattractors? And, on the other
hand, regardless of the previous question, is there any dispersal
strategy allowing the inferior competitor survive (when it would
get extincted if patches were isolated)?

The following result lightens the first question

Proposition 3.8. Consider that the aggregated system (11) fulfills
conditions (9) and (10). Then. there exists, at most, a single positive
equilibrium point.

Proof. See Appendix A.2 �

Next, we establish conditions describing all the possible out-
comes of system (11) under homogeneity conditions.

Proposition 3.9. Consider that the aggregated system (11) fulfills
conditions (9), (10) and �i(0, 0) > 1.

1 If�i(E∗
j
)> 1 for i, j = 1, 2, i /= j then, there exists a single coexistence

state E∗ ∈ R2+ which attracts any solution with initial values in (0,
∞) × (0, ∞).

2 If�i(E∗
j
)< 1 for i, j = 1, 2, i /= j then, there exists a single coexistence

equilibrium point E∗
u which is unstable. Any solution of the system
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Fig. 2. In gray, the nullclines. E1, E2, E5 asymptotically stable equilibrium points. E3, E4 unstable equilibrium points. Each polygonal displays an orbit with initial values at
P1, P2 and P3, respectively. b1

1 = 7.5, b2
1 = 6.5, b1

2 = 2, b2
2 = 5, c1

12 = 5, c2
12 = 4.5, c1

21 = 5.5, c2
21 = 3.5, v11 = 0.9, v21 = 0.2.

aggregated system with initial values y1(0), y2(0) /= E∗
u converges

either toE∗
1 orE∗

2. Indeed,E∗
u is a saddle and its stable manifold divides

the positive cone in two regions, each of them being the basins of
attraction of one semi trivial equilibrium point.

3 Assume now that �i(E∗
j
)> 1 but �j(E∗

i
)< 1. Then,

(a) It there exists a coexistence state E*, then it is a saddle any solu-
tion of the system aggregated system with initial values y1(0),
y2(0) /= E* and yj(0) /= 0 converges to E∗

j
.

(b) It there exists no coexistence state, then any solution of the sys-
tem aggregated system with initial values such that yj(0) /= 0
converges to E∗

j
.

Proof. It follows from Corollary 3.3, which assures that any solu-
tion converges to an equilibrium point, Proposition 3.8, where it is
shown that there is at most one coexistence state and conditions
on �i(E∗

j
), that are related with the local stability of the semi trivial

equilibrium points.�

The following result corroborates the intuition that there are
always dispersal rates allowing species coexistence. An obvious
choice consists of dividing the arena between species, setting dis-
persal rates so that each species occupies a different patch (but
there will be no competition). This result will turn out interesting
(and non obvious) situations.

Proposition 3.10. Consider the aggregated system (11) and assume
also condition (10). Then, for any fixed values b1 > 1, b2 > 1, c12 and c21,
there exist dispersal rates v11 and v21 fulfilling conditions �i(E∗

j
)> 1,

for i /= j, i, j = 1, 2.

Proof. See Appendix A.2�

A first comment on the previous result is that strong (and
not only extreme) asymmetric dispersal rates allows population

coexistence. Besides, from the proof we get the following upper
bounds for the population size after a transient time.

Corollary 3.11. Under the hypotheses of Proposition 11, after a
transient time the population is bounded from above by (2(b1 − 1),
2(b2 − 1)).

Proof. It follows from direct calculations. �

We conclude this section with numerical simulations (Fig. 3)
that illustrate the possible outcomes of the competition process
for different dispersal strategies. We use the explicit conditions
achieved in Section 3.1.2 to compute conditions (7) and (8). We
consider an homogeneous environment (in the sense of (9)) and
set coefficients so that species 1 would drive species 2 to extinc-
tion if patches were isolated. The outcome of the model in case of
asymptotic symmetrical distribution of individuals, that is, around
the line �1 =�2, is the same as if patches were isolated (blue region).
On the contrary, in case of strong asymmetric dispersal, there is
species coexistence (white region). When species competition abil-
ities are similar, appropriate dispersal rates allow the weaker to
out compete the stronger species (green region). As the difference
in competitive abilities become larger, the weaker competitor is
more likely to disappear.

4. Discussion of results

Our results highlight the key role of fast dispersal for species
competition in patchy habitats. In this case, dispersal becomes
important not only to find new resources, but also to avoid patches
where competitive pressure is high.

From an applied point of view, the construction of corridors
between patches allowing individuals to migrate is a popular man-
agement tool used in the design of species conservation or species
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Fig. 3. Competition outcome as a function of asymptotic distribution of individuals. Parameter �i stands for the asymptotic fraction of individuals of species i = 1, 2 at patch i.
In medium gray: species 2 exclusion, in white, coexistence, in dark gray conditional extinction, in light gray species 1 exclusion. (For interpretation of the references to color
in this figure legend, the reader is referred to the web version of this article.)

control strategies (Revilla and Wiegand, 1912). Our results suggest
how important is for management purposes controlling not only
these corridors and the dispersal rates through them, but also local
intrinsic growth rates. Aided by parameter �(0, 0) managers can
analyze and decide the most efficient strategy to enable one species
extinction.

We must point out that there is controversy surrounding the
effects of connecting or not connecting patches, since there are
experiments demonstrating beneficial and negative effect of dis-
persal on the size of the metapopulation (Bowne and Bowers, 2004).
This apparent contradiction is faced in Franco and Ruiz-Herrera (in
press) considering a single species in a two patches environment,
and our results can be used to extend their findings to habitats
consisting of an arbitrary number of patches connected by fast
dispersal.

As we have pointed out, when species competition effects are
taken into account, �i(0, 0) > 1 is a necessary but not sufficient
condition for species i to survive. We have derived explicit con-
ditions (based on the values of �i(E∗

j
)) entailing species extinction

due to priority effects or species coexistence. Our results preclude
the existence of neither periodic nor chaotic behavior in the evolu-
tion of the competing species. On the contrary, we found that the
total amount of individuals of each species converges eventually to
an equilibrium value.

This results are somehow at odds with those found in Cushing
et al. (2004, 2007) used to explain the unexpected (and unex-
plained) laboratory data obtained in the experiments with flour
beetles (see Section 1) performed by Park (1948, 1954, 1957)
and Park et al. (1964). Data from this experiment showed that
whether competitive coexistence occurred or competitive exclu-
sion occurred was due to priority effects. In Cushing et al. (2004,
2007) the authors proposed age structured specific models for the
flour beetle that produced multiple mixed type attractors compat-
ible with the aforementioned data. In particular, the coexistence
state is a two cycle. We have found also (see Section 3.1.1) multi
attractor scenarios consisting of two or three equilibrium states
which are also compatible with the aforementioned data. However,
even if the experiments designed by Park and his collaborators did
not take into account space, subsequent studies pointed out in the
opposite direction.

In Ghent (1966) it is reported a behavioral dissimilarity between
the two species of triboulim (T) used by Park: Tribolium casta-
neum was repelled by conditioned flour while Tribolium confusum
was strongly attracted by conditioned flour. Flour medium is

conditioned by beetles living in and involves different factors, as
depletion of the nutritive value of the medium or, most markedly,
accumulation of the quinones given off by Tribolium imagoes and
taken up by the flour. In McDonald (1968) it is reported that the
average mobility of T. confunsum is about 9 cm per day. To contex-
tualize these results, we recall that Park established the cultures
in glass containers of either 9.5 cm × 2.5 cm or 10 cm × 7 cm and
that the medium was changed every 30 days. Summing up, during
each 30 days period tribolium can conditioned the environment
(which is equivalent to consider a two patches environment) and
cultures location can evolve towards an asymmetric distribution
due to medium preference along with high mobility rates (when
compared with the size of the glass containers). And those are the
ingredients allowing Figs. 1 and 2. Unfortunately we cannot com-
pare the model with real data since dispersal data was not recorded
(as it was not part of the experiment).

In the particular case of a two patches homogeneous envi-
ronment with local Lotka–Volterra competition and fast linear
dispersal was analyzed in Nguyen Ngoc et al. (2010). The authors
found an upper bound for the weaker competitor competitive abili-
ties below which it will get extinct regardless of the dispersal rates
that, however, does not exist in our model. Strong asymmetrical
dispersal rates divide the arena: each patch is mainly occupied by
one of the species and interaction becomes very low, so that the
effects of competition are negligible. The underlaying mathemati-
cal reason for these incompatible results is that system (5) displays
functional and dynamical emergence (see Auger et al., 2008) while
its counterpart in Nguyen Ngoc et al. (2010) does not.

5. Conclusions

Our results highlight that fast dispersal is a trade-off mechanism
in competing species dynamics, and it should be accounted along
with the life history trade-offs pointed out in Amarasekare (2003)
among those relevant processes in metapopulation theory.

Even in the simplest environment consisting of two patches, and
despite of being homogeneous or heterogeneous, we have proved
that coexistence is always possible provided appropriate dispersal
rates. Indeed, it follows from our results that manipulating local
intrinsic growth rates and/or dispersal rates are effective steps to
promote coexistence or one species exclusion and thus, are useful
from the management point of view.

Furthermore, as the number of sites increases, the topology of
the patchy environment becomes more and more complex. We
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hope that this work will serve as first step to deepen in the inter-
play between the topological structure (distribution of corridors
and dispersal rates) and the local processes (local growth rate and
competition effects) that define patchy environments.
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Appendix A.

A.1. Approximate aggregation of nonlinear discrete systems

We briefly describe the approximate aggregation procedure
presented in Sanz et al. (2008) where details can be found. We con-
sider a population divided into groups, and each of these groups
divided into several subgroups. The state at time t of the population
with q groups is represented by a vectorX(t) := (x1(t), . . .,xq(t))

T ∈
R
N , where every vector xi(t) := (xi1(t), . . ., xiN

i
(t))

T
∈ RNi+ , i = 1, . . .,

q, represents the state of the i group which is divided into Ni sub-
groups, with N = N1 + · · · + Nq.

The evolution of the population is driven by two processes which
characteristic time scales are very different from each other. These
two processes, fast and slow, are defined by two mappings

F, S :˝N −→�N; F, S ∈ C1(�N),

where�N ⊂ RN is a nonempty open set.
We use as the time unit of the system coupling both processes

that corresponding to the slow process. We approximate the effect
of the fast dynamics over a time interval much longer than its own
by means of the k-th iterate of mapping F, F(k), where k represents
the time scales ratio. Thus, the complete system is defined by

Xk(t + 1) = S(F (k)(Xk(t))) := Hk(Xk(t)), (12)

In order to proceed to the approximate reduction of the system
(12) we assume the following two hypotheses on F:

Hypothesis A.1. The sequence of iterates of F, {F (k)}k∈N, converges
pointwise on�N to a mapping F̄ :�N →�N , such that F̄ ∈ C1(�N).

Hypothesis A.2. There exist a non-empty open subset �q ⊂ Rq
with q < N and two mappings G :�N −→�q and E :�q −→�N with
G ∈ C1(�N), E ∈ C1(�q), such that the mapping F̄ of Hypothesis A.1
can be expressed as F̄ = E ◦ G.

We first define the auxiliary system which approximates (12)
when k→ ∞, i.e., when the fast process has attained its equilibrium.
Denoting its vector state at time t by Xt, this auxiliary system is

X(t + 1) = S(F̄(X(t))) = (S ◦ E ◦ G)(X(t)), (13)

second, we define the global variables through

Y := G(X) ∈ Rq.
and applying G to both sides in (13) we obtain the so-called aggre-
gated system associated to system (12)

y(t + 1) = (G ◦ S ◦ E)(y(t)) := s̄(y(t)). (14)

The next theorem relates the asymptotic behavior of systems (12)
and (14) for large enough values of parameter k.

Theorem A.1. Let us assume that F verify Hypotheses A.1 and A.2,
and that

lim
k−→∞

F (k) = F̄ and lim
k−→∞

DF (k) = DF̄ (15)

uniformly on any compact set K ⊂�N.

Let y∗ ∈ Rq be a hyperbolic equilibrium point of (14). Then there
exists k0 ∈ N such that for each k ≥ k0 there exists a hyperbolic equi-
librium point X∗

k
of (12) satisfying

lim
k→∞

X∗
k = X∗

where X* = E(y*). Moreover,

1 If y* is asymptotically stable then X∗
k

is asymptotically stable for

each k ≥ k0, and if X0 ∈ RN is such that lim
n−→∞

s̄(n)(y0) = y∗, where

y0 = G(X0), then

lim
n−→∞

H(n)
k

(X0) = X∗
k .

2 If y* is unstable then X∗
k

is unstable, for each k ≥ k0.

A.2. Proofs

Proof of Proposition 3.2.

1 Consider any solution (y1(t), y2(t)) of the aggregated (5) such
that y1(0) /= 0, y2(0) /= 0. The conditions �i(0, 0) ≤ 1 imply that
0 <�i(y1, y2) < 1, so that (y1(t), y2(t)) is a strictly decreasing
sequence bounded from below. Therefore, there exist ỹi =
lim
t→∞

yi(t). If ỹi /= 0, then 1 = �i(ỹ1, ỹ2), which in contradiction with

�i(0, 0) ≤ 1. Thus ỹi = 0 for i = 1, 2.
2 Without lost of generality, we assume that i = 1. The fixed point

equation is 1 =�1(y1, 0) and the conclusion follows from the
fact that �1(y1, 0) is a strictly decreasing function such that
lim
y1→∞

�1(y1,0) = 0 �

Proof of Corollary 3.3. We already know from Proposition 3.2
that Corollary 3.3 holds when �i(0, 0) ≤ 1 for i = 1, 2.

Therefore, let us assume that �i(0, 0) > 1 for i = 1 or i = 2. In this
case the desired result follows from Theorem 5.2 in (Smith, 1988),
and we proceed by showing that system (5) fulfills the hypotheses
H1 up to H4 required there. Using the notation introduced in Smith
(1988), we define a =

∑p
j=1b

j
1/c

j
11 and b =

∑p
j=1b

j
1/c

j
22 (so that

J = [0, a] × [0, b]) and P(u, v) = (f1(u, v), f2(u, v)) : [0,∞) × [0,∞) →
[0,∞) × [0,∞) that is continuous.

Hypothesis H1 requires system (5) to be strictly competitive on J
and strongly competitive on the interior of J (see page 338 in (Smith,
1988) for the precise definitions) which follow from statement 3 in
Proposition 3.1. Hypothesis H2 states that (0, 0) is a repellor, which
holds since �i(0, 0) > 1 for i = 1, 2. Hypothesis H3 is also meet by
defining û = y∗

1 and v̂ = y∗
2. Finally, from 2 in Proposition 3.1 we get

that (f1, f2) : J → J which yields hypothesis H4. �

Proof of Proposition 3.4. Statement 1 follows easily using the
proof of Proposition 3.2 and Corollary 3.3.

Regarding statement 2, thanks to Corollary 3.3 we know that
any solution (y1(t), y2(t)) of the aggregated system (5) converges
to an equilibrium point (y∗

1, y
∗
2). Condition �2(0, 0) ≤ 1 implies that

y∗
2 = 0 and that it is the unique possible value for y∗

2. Therefore, the
only possible equilibrium points of the reduced system are (0, 0)
and E∗

1. Note that y1(0) > 0 implies that y1(t) > 0 for all t ≥ 0. Being�1
continuous in the positive cone, there exists ı> 0 such that �1(y1,

y2) > 1 for all (y1, y2) ∈ A =
{

0< y1,0< y2, 0<
√
y2

1 + y2
2 < ı

}
.

It means that y1(t) can not converge to 0 since, as soon as (y1(t),
y2(t)) ∈ A y1(t + 1) =�1(y1(t), y2(t))y1(t) > y1(t). Therefore, E∗

1 attracts
any solution such that y1(0) /= 0.

A similar reasoning leads to prove statement 3.�
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Proof of Proposition 3.8. The proof is not difficult but laborious.
The first equation of the fixed point equation associated to system
(11) is equivalent to

v1(1 − v1)y2
1 + [c12(v1 + v2 − 2v1v2)y2

+ 1 − 2b1v1(1 − v1)]y1 + v2(1 − v2)(c12)2y2
2

+ c12[1 − b1(v1 + v2 − 2v1v2)]y2 + 1 − b1 = 0. (16)

Given that v1(1 − v2)> 0 we argue on the sign coefficient of y1 and
the intercept. We analyze first with the sign of the intercept of Eq.
(16): let us consider

v2(1 − v2)(c12)2y2
2 + c12[1 − b1(v2 + v2 − 2v1v2)]y2 + 1 − b1 = 0.

(17)

It is straightforward than this equation (in y2) has one positive root
and one negative root too, since v2(1 − v2)(1 − b1)< 0.

Then, we assume that the left hand side of (17) (the intercept of
(16)) is negative for any positive values of y2. Then, Descarte’s rule
implies that Eq. (16) possesses, at most, one positive solution, since
v1(1 − v1)> 0.

Instead, we assume now that the left hand side of (17) is positive
and we focus on the sign of the coefficient of y1 in Eq. (16)

c12(v1 + v2 − 2v1v2)y2 + 1 − 2b1v1(1 − v1). (18)

If it is positive, then there the real solutions of Eq. (16) are nega-
tive, if any. Otherwise equation (16) possesses up to two positive
solutions. Still, we are only interested in positive values of y2, so
that

y2 > ŷ2

=
− [1−b1(v1+v2−2v1v2)] +

√
[v1+v2−b1(1−2v1v2)]2−4v2(1−v2)(1−b1)

2c12v2(1−v2)
> 0.

Then, it follows from (18) that

c12(v1 + v2 − 2v1v2)y2 + 1 − 2b1v1(1 − v1)

> c12(v1 + v2 − 2v1v2)ŷ2 + 1 − 2b1v1(1 − v1)

since v1 + v2 − 2v1v2 > 0 ⇔ 1
v1

+ 1
v2
> 2, which always holds. The

proof finishes by showing that

c12(v1 + v2 − 2v1v2)ŷ2 + 1 − 2b1v1(1 − v1)> 0

which, replacing the ŷ2 by its value, is equivalent to

(v1 + v2 − 2v1v2) (b1(v1 + v2 − 2v1v2) − 1) + (v1 + v2 − 2v1v2)

×
√

[v1 + v2 − b1(1 − 2v1v2)]2 − 4v2(1 − v2)(1 − b1)

+ 2v2(1 − v2) (1 − 2b1v1(1 − v1))> 0.

The previous inequality holds if

(v1 + v2 − 2v1v2) (b1(v1 + v2 − 2v1v2) − 1)

+ 2v2(1 − v2) (1 − 2b1v1(1 − v1))> 0.

Note that v1 + v2 − 2v1v2 = v1(1 − v2) + v2(1 − v1) and, rear-
ranging terms, the previous inequality is equivalent to

b1(v1(1 − v2) − v2(1 − v1))2 + (v1 − v2)(1 − 2v2))> 0

Finally, calculating the maximum and minimum of functions

 1(v1, v2) = b1(v1(1 − v2) − v2(1 − v1))2,

 2(v1, v2) = (v1 − v2)(1 − 2v2))

in the square [0, 1] × [0, 1] finishes the proof.�

Proof of Proposition 3.10. Direct calculations show that one of
the eigenvalues of the corresponding Jacobian matrix is always in
modulus less that 1 while and the other one

�1(v1, v2) := b2v2

1 + c21v1y∗
1

+ b2(1 − v2)
1 + c21(1 − v1)y∗

1
, (19)

where we have written v1 = v11 and v2 = v21, can be larger or less
than 1. We can calculate explicitly y∗

1, that depends n v1 and replace
its expression in (19). It can be shown that y∗

1(v1) is symmetric in
the [0, 1] interval with respect to 1/2. Moreover, it is monotone
increasing in [0, 1/2],

lim
v1→0

y∗
1(v1) = b1 − 1 and lim

v1→1/2
y∗

1(v1) = 2(b1 − 1).

Then, it is straightforward that �1(0,0) = b2
1+c12(b1−1) = �1(1,1),

�1(1, 0) = b2 =�1(0, 1) > 1 while�2(0,0) = b1
1+c21(b2−1) = �2(1,1) and

�2(1, 0) = b1 =�2(0, 1) > 1. Then, there exist a neighborhood of
(v1, v2) = (1,0) and (v1, v2) = (0,1) inside the unit square where
conditions �i(E∗

j
)> 1, for i /= j, i, j = 1, 2 hold. �
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