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Abstract. In this work we present a discrete predator-prey ecoepidemic model. The predator-
prey interactions are represented by a discrete Leslie-Gower model with prey intra-specific com-
petition. The disease dynamics follows a discrete SIS epidemic model with frequency-dependent
transmission. We focus on the case of disease only affecting prey though the case of a parasite of
the predators is also presented. We assume that parasites provoke density- and trait-mediated
indirect interactions in the predator-prey community that occur on a shorter time scale. This
is included in the model considering that in each time unit t here exist a number k of episodes
of epidemic changes followed by a single episode of demographic change, all of them occur-
ring separately. The aim of this work is examining the effects of parasites on the long-term
prey-predators interactions. These interactions in the absence of disease are governed by the
Leslie-Gower model. In the case of endemic disease they can be analyzed through a reduced
predator-prey model which summarizes the disease dynamics in its parameters. Conditions for
the disease to drive extinct the whole community are obtained. When the community keeps
stabilized different cases of the influence of disease on populations sizes are presented.

Keywords and phrases: Predator-prey system; SIS epidemic model, discrete-time system;
time scales
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1. Introduction.

Parasites play a role in many processes within host populations and communities that influence species
coexistence and ecosystem function [14]. Parasites account for a substantial proportion of the biomass
of certain ecosystems and can alter food web structure. The study of these broadly extended systems
requires the combination of community ecology and parasitology elements, approach that is sometimes
called ecosystem parasitology [14]. The mathematical models representing these biological systems are
studied in mathematical ecology and mathematical epidemiology [7], respectively, whereas the mathemat-
ical counterpart of ecosystem parasitology could be called mathematical eco-epidemiology. The papers
by Anderson and May [4] and Hadeler and Freedman [13] in the mid eighties are the two key eco-
epidemiological papers, that appeared when this denomination was still not used. During the nineties
some other papers on eco-epidemiology started to be published, most of them following one of those two
papers. A suggestion of the late O. Arino to J. Chattopadhyay [9] is at the origin of the name of the
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field: ecoepidemics. Since then the field of mathematical eco-epidemiology has grown enormously, see the
recent review [21] by E. Venturino, one of its early pioneers.

The studies of communities focus on how species interactions affect the populations densities. These
interactions can be direct, as the case of predation or interference competition, where individuals of both
species have direct effects on each other. At the same level of importance are the indirects interactions,
those arising when the impact of one species on another is mediated by the action of a third. Indirect
interactions are classified into trait- and density-mediated. Parasites are a source of both classes of indirect
interactions in a community. Killing their hosts provokes a density-mediated indirect interaction while
changing host physiology could yield a trait-mediated one [14]. Trait-mediated effects can occur on shorter
timescales than direct effects being thus crucial in structuring communities [6].

In this work we examine the effects of parasites on interactions between species at different trophic
levels: predator-prey interactions. There are different ways in which parasites can enter into a predator-
prey module and their influence on population dynamics will certainly depend on their position in the
module. We focus on parasitism on the prey species, though we also briefly present the case of the
predators being the hosts of the parasites. On the other hand, we do not consider the case of both species
hosting the parasites. A relevant feature of these modules is the degree of predator specialisation. We
assume a specialist predator, therefore more sensitive to the impact of parasitism on the prey. Concerning
the indirect effects of parasitism, we reflect the density-mediated ones considering different intrinsic
growth rates for susceptible a infected preys, whereas the trait-mediated ones are included by assuming
different intra-species competitive abilities and selective predation for or against infected prey.

The theory of predator-prey interactions with infected prey is well developed for continuous time.
Apart from the aforementioned seminal works [4,9], Venturino already in 1994, [22], considered a Lotka-
Volterra prey-predator model and studied the effects on the community of a disease affecting either the
prey or the predator population. Since then an important number of works have been devoted to the
subject, see the references in [21].

In discrete time we only found a work studying a predator-prey ecoepidemic model, [15]. In it a discrete
predator-prey model with disease in prey is obtained by discretization of a continuous model and studied
with the aim of finding more complex dynamical behaviour than in its continuous counterpart. In this
work we present a discrete predator-prey ecoepidemic model that is built up from a simple discrete
predator-prey model, the Leslie-Gower model [18], and the disease is introduced by means of a discrete
SIS epidemic model with frequency-dependent transmission [1]. One of the main drawbacks of continuous
models is that all the processes involved in population dynamics such as births, growth, interactions
and infection must operate together at all times [3]. In discrete models it is natural to break time steps
up into distinct stages so that each process occurs separately. To take into account that the disease
mediated effects on the predator-prey community occur on a shorter timescale we assume that each time
unit contains a single episode of demographic change and a number k of epidemic changes, all of them
occurring separately [16].

The proposed model takes the form of a three dimensional system of difference equations with two time
scales. The two time scales are introduced in the system by letting, in each time unit, the fast process,
the disease dynamics, act a number k of times followed by the slow process, the demographic dynamics,
acting a single time. The construction of this kind of systems, together with a reduction method that
simplifies their analysis, is reviewed by the authors in [8]. The application of the reduction method to the
proposed system yields a two dimensional one representing a predator-prey model including the effects of
the disease in its parameters. This latter system turns out to be more general than the initial Leslie-Gower
one and, since we have not found it in the literature, it is studied in the appendix.

The long term behaviour of the solutions of the predator-prey model without disease is characterized
by means of equilibrium points. It exhibits, depending on parameter values, three different steady states:
extinction of the whole community, prey at their carrying capacity together with predator disappearance,
and coexistence of both populations. The reduced system allows to perform an analogous analysis of the
long term behaviour of the model with disease, obtaining the corresponding three different cases. The
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changes that the disease introduces in the community are thus observable in two different ways. The first
one has to do with changing the kind of equilibrium point defining the asymptotic behaviour: conditions
are found for the disease to drive extinct a community otherwise viable and the other way around, making
viable an inviable community, in some cases of symbiotic parasites. If there is no change through disease in
the kind of equilibrium point defining the stationary state of the community, the second way of detecting
the effects of the disease is by comparing populations sizes and community structures: neat results of this
kind are obtained in some particular cases.

The rest of this paper is organized as follows: Section 2 presents the discrete SIS epidemic model
and its asymptotic behaviour in 2.1, introduces the discrete Leslie-Gower predator-prey model with prey
intra-specific competition in 2.2, couples both models together to obtain the two time-scales discrete
eco-epidemic model in 2.3, and builds up the reduced system by means of which the complete model is
analyzed in 2.4; Section 3 focuses on the analysis of the influence of parasites on the dynamics of the
predator-prey community; Section 4 briefly develops an analogous model with the disease affecting the
predators; In Section 5, we collect some observations and conclusions; In the appendix the reduction of
the complete system is justified (A.1) and the reduced systems are studied (A.2).

2. Presentation of the model.

The model describes in discrete time a predator-prey community with the prey affected by a disease which
acts on a shorter time scale than the predator-prey dynamics. The time unit of the model is considered
to be the one associated to its demographic part, typically one year. In this time unit, referred to as
slow, there is a single episode of demographic change. On the other hand, the fact that pathogens exhibit
outbreaks on short time scales, on the order of days or weeks, lead us to explicitly include a second time
scale in the model allowing a number k of disease infection-recovery cycles in one slow time unit.

Time in the slow time unit is denoted t. The time step on which the outbreak is modelled is 4. P (t),
NS(t) and NI(t) represents the predators, the susceptible prey and the infected prey, respectively, at time
t. Between time t and time t+ 1 we consider the disease dynamics acting sequentially k times followed by
one demographic episode. To distinguish the different outbreaks episodes we use the notation NS(t+m4)
and NI(t+m4) with m = 1, . . . , k.

We now proceed to present the disease dynamics and the prey-predator model. This is followed by
the construction of the complete model together with an associated reduced system that we use for its
analysis.

2.1. Prey infection: SIS model.

Following [1] we propose the following discrete-time SIS epidemic model for the prey:

NS(t+ (m+ 1)4) = NS(t+m4)

(
1− βNI(t+m4)

NS(t+m4) +NI(t+m4)

)
+ γNI(t+m4)

NI(t+ (m+ 1)4) = NI(t+m4)

(
1 +

βNS(t+m4)

NS(t+m4) +NI(t+m4)
− γ
) (2.1)

As a consequence of assuming a fast development of the disease, the number of contacts is supposed to
be constant irrespective of the density of the population. This implies [5] that transmission is frequency-
dependent, with β being the transmission coefficient. The recovery coefficient γ represents the fraction of
infected individuals that recover in a unit of time.

The disease process is represented by the map

F(NS , NI) =

(
NS −

βNSNI
NS +NI

+ γNI , NI +
βNSNI
NS +NI

− γNI
)

(2.2)

so that the total effect of the k outbreaks episodes during one slow time unit is defined by its k-th iterate
Fk.
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The prey population size N(t) := NS(t)+NI(t) at the beginning of a slow time unit remains constant,
NS(t + m4) + NI(t + m4) = N(t) (m = 1, . . . , k), till the next demographic episode at the end of the
time unit.

Henceforth we assume that the following inequalities hold:

γ ≤ 1 and β < (1 +
√
γ)

2
, (2.3)

so that solutions of system (2.1) are positive for all positive initial conditions [1].
The asymptotic behaviour of the solutions of system (2.1) is studied in [1]. The basic reproduction

number for this model is R0 = β/γ. If R0 ≤ 1 then for any positive initial condition the number of
infecteds monotonically decreases to 0, i.e., the positive solutions of (2.1) converge to the disease-free
equilibrium N∗0 = (N, 0), where N is the (constant) prey population size. On the other hand, if R0 > 1
the disease becomes endemic. Assuming, in addition to inequalities (2.3), that

γ < β ≤ 2 + γ, (2.4)

the positive solutions of (2.1) converge to an asymptotically stable endemic equilibrium:

N∗e = (N∗S , N
∗
I ) = ((γ/β)N, (1− γ/β)N) . (2.5)

If 2+γ < β <
(
1 +
√
γ
)2

then the monotonic convergence to an endemic equilibrium disappears giving
rise to period-doubling and chaotic behaviour.

As we will see in Section 2.4, in order to reduce the complete model we will need to make use of the
equilibrium of the fast disease process. This equilibrium is expressed as the limit, F̄ , of the iterates of
map F . According to the previous reasonings

F̄(NS , NI) := lim
k→∞

Fk(NS , NI) = (ν∗N, (1− ν∗)N) , (2.6)

with N = NS + NI , ν
∗ = 1 if β ≤ γ and ν∗ = γ/β = 1/R0 if γ < β ≤ 2 + γ. Note that ν∗ = 1 implies

that the disease is eradicated.

2.2. Demography: Predator-prey interaction.

The basic model we use to represent the interactions between the populations of preys, N(t), and preda-
tors, P (t), is the discrete predator-prey Leslie-Gower model with prey intra-specific competition:

N(t+ 1) =
a1N(t)

1 + b1N(t) + c1P (t)

P (t+ 1) =
a2P (t)

1 + c2P (t)/N(t)

(2.7)

Parameters a1 and b1 are the growth rate and the intra-specific competition coefficient of the prey in
the absence of predators, i.e, Beverton-Holt model with carrying capacity (a1 − 1)/b1 [2]. Parameter c1
weights the effect of predation on prey growth rate and parameter a2 is the predators growth rate in the
case of infinitely abundant prey. Finally, parameter c2 weights the ratio P (t)/N(t), number of predators
per prey, so that the larger c2 is the greater the reduction of the predators growth rate [18].

As we show in Theorem (A.3) in the Appendix there are three possible asymptotic behaviours of the
solutions of system (2.7) with positive initial conditions:

1. If a1 ≤ 1 then lim
t→∞

(N(t), P (t)) = (0, 0).

2. If a1 > 1 and a2 ≤ 1 then lim
t→∞

(N(t), P (t)) = (n̄, 0) = ((a1 − 1) /b1, 0).

3. If a1 > 1 and a2 > 1 then system (2.7) possesses a unique positive equilibrium point:

(n∗, p∗) =

(
(a1 − 1)c2

b1c2 + (a2 − 1)c1
,

(a1 − 1)(a2 − 1)

b1c2 + (a2 − 1)c1

)
, (2.8)

which is asymptotically stable.
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2.3. The complete model.

The previous predator-prey model can be adapted to contemplate prey individuals classified into sus-
ceptible and infected. The trait-mediated indirect effects of parasites are considered in the growth and
intra-specific competition of prey as well as in the predation related parameters. More specifically, we
assume different intrinsic growth rates for susceptible, aS1 , and infected, aI1, preys. We also distinguish
four prey intra-specific competition coefficients: bSS1 , bSI1 , bIS1 and bII1 . Parameters cS1 and cI1 refer to
the effect of predation on susceptible and infected prey. Finally, parameter dI allows one to differentiate
between susceptible and infected prey as resource for predators growth. dI = 1 means that both types of
prey contribute equally to predators growth, whereas 0 < dI < 1 (resp. dI > 1) imply that infected prey
have a lesser (resp. larger) influence than susceptible prey.

Now, the proposed generalization of the discrete predator-prey Leslie-Gower model with prey intra-
specific competition reads as follows:

NS(t+ 1) =
aS1NS(t)

1 + bSS1 NS(t) + bSI1 NI(t) + cS1P (t)

NI(t+ 1) =
aI1NI(t)

1 + bIS1 NS(t) + bII1 NI(t) + cI1P (t)

P (t+ 1) =
a2P (t)

1 + c2P (t)/(NS(t) + dINI(t))

(2.9)

We build up the complete model by combining the demographic and the disease processes, i.e., the
disease process represented in time interval [t, t + 1] by the k-th iterate Fk of map F (2.2), and the
demography described through system (2.9) (see system (A.1) in the Appendix).

Using the notation Fk(NS , NI) =
(
FkS(NS , NI),F

k
I (NS , NI)

)
the complete model has the form

NS(t+ 1) =
aS1 FkS(NS , NI)

1 + bSS1 FkS(NS , NI) + bSI1 FkI (NS , NI) + cS1P (t)

NI(t+ 1) =
aI1
(
Fk
)
I

(NS , NI)

1 + bIS1 FkS(NS , NI) + bII1 FkI (NS , NI) + cI1P (t)

P (t+ 1) =
a2P (t)

1 + c2P (t)/(FkS(NS , NI) + dIFkI (NS , NI))

(2.10)

2.4. The reduced model.

In order to become analytically tractable, system (2.10) must be reduced to a two-dimensional system.
To do so we make use of discrete approximate reduction techniques and follow the reduction proce-
dure presented in Appendix A.1. Assuming that the disease process has attained its equilibrium (2.6),
the dynamics of variables N = NS + NI , total number of preys, and P , number of predators, can be
approximated by the following system, built as (A.2) in the Appendix:

N(t+ 1) =
ν∗aS1N(t)

1 +
(
ν∗bSS1 + (1− ν∗)bSI1

)
N(t) + cS1P (t)

+
(1− ν∗)aI1N(t)

1 +
(
ν∗bIS1 + (1− ν∗)bII1

)
N(t) + cI1P (t)

P (t+ 1) =
a2P (t)

1 +
c2

ν∗ + (1− ν∗)dI
· P (t)

N(t)
(2.11)

that we write in the next simplified form

N(t+ 1) =
α1N(t)

1 + β1N(t) + γ1P (t)
+

α2N(t)

1 + β2N(t) + γ2P (t)

P (t+ 1) =
α3P (t)

1 + γ3P (t)/N(t)

(2.12)

5
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where we have defined

α1 = ν∗aS1 , α2 = (1− ν∗)aI1, α3 = a2, β1 = ν∗bSS1 + (1− ν∗)bSI1 (2.13)

β2 = ν∗bIS1 + (1− ν∗)bII1 , γ1 = cS1 , γ2 = cI1, γ3 = c2/
(
ν∗ + (1− ν∗)dI

)
Notice that system (2.7) has the same form of system (2.12) when me make α2 = 0, what allows

one to study the dynamics of the Leslie-Gower predator-prey model with intraspecific competition as a
particular case of (2.12).

The asymptotic behaviour of solutions of system (2.11) is established in Theorem (A.3). Let us sum-
marize here its results:

1. If R0 = β/γ < 1, then ν∗ = 1 so that the disease is eradicated at the fast time scale and the system
acts as the predator-prey model (2.7).

2. If R0 = β/γ > 1, then ν∗ = γ/β = 1/R0 and the disease becomes endemic. Depending on parameters
values, either both preys and predators go extinct, or predators disappear and preys stabilize, or the
community attains a positive equilibrium state. In this case:

(a) If aS1 /R0 + (1− 1/R0)aI1 ≤ 1 then lim
t→∞

(N(t), P (t)) = (0, 0).

(b) If aS1 /R0 + (1− 1/R0)aI1 > 1 and a2 ≤ 1 then lim
t→∞

(N(t), P (t)) =
(
N̄ , 0

)
, where N̄ is (A.5).

(c) If aS1 /R0 + (1− 1/R0)aI1 > 1 and a2 > 1 then system (2.11) possesses a unique positive equilibrium
point (N∗, P ∗) given by (A.6) which is asymptotically stable.

Theorem A.2 in the Appendix guarantees that these three behaviours are inherited by system (2.10),
where the number of susceptible and infected preys is given by N/R0 and (1 − 1/R0)N respectively.
Indeed, the positive solutions (NS(t), NI(t), P (t)) of system (2.10) approximately tend to (0, 0, 0) in case
(a) and to

(
N̄/R0, (1− 1/R0)N̄ , 0

)
in case (b) whereas in case (c) the system has an equilibrium point

which is asymptotically stable and can be approximated by (N∗/R0, (1− 1/R0)N∗, P ∗).

3. Effects of the disease on predator-prey interactions.

In order to frame the discussion, we notice that the disease modifies the vital features (growth rate) as
well as species interaction abilities (intra specific competition and predation effects on prey a predator)
of the infected individuals.

To analyze the influence of parasite on the dynamics of the predator-prey community we compare the
asymptotic behaviours of the solutions of systems (2.7), representing the disease free community state,
and (2.11), which reflects the long term behaviour of system (2.10) where the disease acting in a shorter
time scale is taken into account. For the comparison we assume that (a) parameters affecting susceptible
prey in system (2.10) coincide with the corresponding ones affecting prey in system (2.7), i.e., aS1 = a1,
bSS1 = b1 y cS1 = c1, and (b) R0 > 1, i.e., the disease is endemic, since otherwise we can not measure its
effect.

The intensity of the disease is characterized by its basic reproduction number R0. As it was previously
mentioned there are four ways through which the introduction of the disease affects the coefficients of
the predator-prey model without disease:

(i) Effect on the net prey growth rate in the absence of density dependence, i.e., aI1 6= aS1 .

(ii) Effect on predation, i.e., cI1 6= cS1 .

(iii) Effect on the capacity of infected prey to contribute to predator growth, i.e., dI 6= 1.

(iv) Effect on the intracompetitive abilities of prey, i.e., at least one of the coefficients bSI1 , bSS1 , bII1 and
bIS1 is different from the others.

6
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3.1. Effects on the survival of prey and predator population.

In this section we consider that the only way the disease affects the survival of prey population is through
item (i) above, i.e., through the value of aI1 compared with that of aS1 .

In many cases the disease has a negative impact on infected individuals, so that we first assume that
aI1 < aS1 . Obviously, the occurrence of a disease outbreak that becomes endemic does not affect the
survival of prey whenever 1 < aI1 < aS1 or aI1 < aS1 < 1. Thus, we assume now that

aI1 < 1 < aS1 , (3.1)

that is, the susceptible prey subpopulation can survive on its own whereas the infective prey subpopulation
can not. The fate of the whole prey population is driven by the value of α1 +α2 = aS1 /R0 + aI1(1− 1/R0)
from where it follows that a sufficient large value of R0 can lead the prey population to extinction. In
particular, aS1 /R0 + aI1(1− 1/R0) < 1 if, and only if

aS1 − aI1
1− aI1

< R0, (3.2)

so that the left hand side of expression (3.2) is a lower threshold for the reproductive number R0 to
eradicate prey population. On the other hand, if the coefficients are such that inequality (3.2) is fully
reversed, then the susceptible part of the prey population is strong enough to compensate for the
otherwise non-viable infected prey population.

Now we turn our attention to the case in which the disease has a positive impact on the fitness of
infected individuals. For example, the interaction between hosts and parasites does not always lead to a
reduction in the number of hosts since sometimes parasites enhance the host fitness as a way of spreading
out, i.e, it is a symbiotic relationship. This is the case, for instance, of Wolbachia and its host Bemisia
tabachi [11,12], and its natural predators (among them, different species of coleoptera) [10,20]. Therefore,
condition aS1 < aI1 is plausible in some situations. As before, we focus on the case

aS1 < 1 < aI1. (3.3)

Analogue calculations to those leading to (3.2) can be carried out to obtain threshold values that decide
whether or not the prey population goes extinct for a certain value of aS1 , aI1 and R0. We stress the fact
that the presence of parasites in a symbiotic relationship with prey might avoid the extinction of the
latter even in the case in which aS1 < 1.

In addition, note that given the prey population can establish, the disease has no effect whatsoever in
the extinction or non-extinction of predators, for this is controlled exclusively by parameter a2.

3.2. Effect on population fitness

To this end, we compare the size of each species population at equilibrium in systems (2.7) without
disease, and (2.11). We assume that a1 = aS1 > 1, aS1 /R0 +aI1(1−1/R0) > 1 so that in both systems prey
tend to a positive equilibrium. Moreover, in order to reduce the complexity of the different expressions
and proceed analytically we assume throughout this section that intraspecific prey interactions (item (iv)
above) are not altered by the disease, so that we set bSS1 = bSI1 = bIS1 = bII1 = b1. We recall the parameter
definitions (2.13) (where v∗ = 1/R0) and that the notation used for the equilibrium points of submodel
(2.7) is equivalent to that of the aggregated system but with lower case letters.

We focus first on prey population when predators can not establish, i.e., a2 = α3 ≤ 1. The effect of an
endemic disease on the prey population is captured by ratio N̄/n̄ and it is straightforward to show that
N̄/n̄ = δ where

δ :=

1
R0
aS1 +

(
1− 1

R0

)
aI1 − 1

aS1 − 1
. (3.4)

7
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Note that δ is independent on items (ii) and (iii) above, and depends only on item (i). Clearly δ is an
increasing function of aI1 and equals one if aI1 = aS1 , so the ratio N̄/n̄ is smaller (resp. larger) that 1, and
consequently the disease reduces (resp. increases) the equilibrium value of prey, if and only if aI1 < aS1
(resp. aI1 > aS1 ). For aI1 > aS1 it admits the following bound:

N̄

n̄
<
aI1 − 1

aS1 − 1
(3.5)

Let us now concentrate in the case in which predators are able to establish, i.e., a2 > 1. The ratios
N∗/n∗ and P ∗/p∗ that characterize the effect of the disease on prey and predators, now depend on items
(i), (ii) and (iii) and in the general case their analytical study is untractable, so later on we will introduce
some simplifying assumptions.

Before that, let us notice that

P ∗

p∗
=

(
1

R0
+ (1− 1

R0
)dI
)
N∗

n∗
. (3.6)

In words, the effect of the disease on predators depends on both its effect on prey population, represented
by N∗/n∗ and the parameter dI modeling the relative contribution of infected prey to predator growth.
Note that when dI = 1 (both susceptible and infected prey contribute equally to predators growth) then
P ∗/p∗ = N∗/n∗ and so the effect on the disease on predators is exactly the same as its effect on prey.
Moreover, when dI < 1 we have P ∗/p∗ < N∗/n∗ and when dI > 1 we have P ∗/p∗ > N∗/n∗, i.e., when
infected prey have a lower (resp. larger) impact on predators growth than non-infected ones, the effect of
the disease on the number of predators is stronger (resp. milder) than its effect on the number of prey.

In any case, (3.6) shows that P ∗/p∗ can be easily studied once we know N∗/n∗, and so in the sequel
we will concentrate our attention mainly on the latter.

3.2.1. Disease affecting only prey growth rate and prey contribution to predator growth

Let us suppose that the predation coefficients (item (ii) above) are not altered by the disease, so that we
set cS1 = cI1 = c1. Then it follows that

N∗

n∗
= δq, (3.7)

where δ is given by (3.4) and

q :=
b1c2 + (a2 − 1) c1

b1c2 + (a2 − 1) c1

(
1
R0

+ (1− 1
R0

)dI
)

Note that when dI = 1 then q = 1 and so N∗/n∗ is independent on b1, c2 and c1 and depends only on
a1, aI1 and R0. Moreover, q < 1 (resp. q > 1) if and only if dI > 1 (resp. dI < 1). Therefore, from (3.7) it
follows that when aI1 < aS1 and dI ≥ 1, then N∗/n∗ < 1 and so the introduction of the disease decreases
the equilibrium population of prey. The contrary happens when the inequalities are fully reversed.

3.2.2. Disease affecting only predation

Another interesting problem is the analysis of the effect on population fitness of item (ii) above, that is,
selective predation for or against infected prey represented by the fact that cI1 6= cS1 = c1. Indeed, there is
empiric evidence of both selective predation for uninfected prey and for infected prey, where in the case
of parasites the latter is also known as parasite-induced vulnerability to predation [17].

In order to simplify the study we suppose that the disease does not affect items (i) and (iii) above so
that we set aI1 = aS1 = a1 > 1 and dI = 1. Clearly, in the case cI1 = cS1 we have that system (2.11) with
the disease degenerates in disease-free system (2.7), and so it must be N∗/n∗ = 1. In addition, from (A.7)
it is immediate to see that, for any fixed values of the rest of the parameters, N∗ is a strictly decreasing
function of cI1 and, therefore, this is also the case for the ratio N∗/n∗. As a consequence, N∗/n∗ is less

8
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than one if and only if cI1 > cS1 , that is, selective predation for infected prey reduces the fitness of the prey
population. The contrary happens when cI1 < cS1 so that selective predation for uninfected prey increases
the fitness of the prey population.

4. Disease in the predator population.

In this section we present a model analogous to the one developed in Section 2 but with the disease
affecting only the predator population. Calling PS and PI the susceptible and the infected predators,
respectively, the disease process is represented by the map

F(PS , PI) =

(
PS −

βPSPI
PS + PI

+ γPI , PI +
βPSPI
PS + PI

− γPI
)

(4.1)

where, as in the case of Section 2 we are assuming conditions (2.3) and (2.4). Its equilibrium has the form

F̄(PS , PI) := lim
k→∞

Fk(PS , PI) = (ν∗P, (1− ν∗)P ) , (4.2)

with P = PS + PI , ν
∗ = 1 if β ≤ γ and ν∗ = γ/β = 1/R0 if γ < β ≤ 2 + γ.

Assuming different intrinsic growth rates, aS2 and aI2, and predation parameters, cS1 and cI1, cS2 and cI2,
for susceptible and infected predators, the Leslie-Gower predator-prey model (2.7) can be adapted to the
case of predator affected by the disease:

N(t+ 1) =
a1NS(t)

1 + b1N(t) + cS1PS(t) + cI1PI(t)

PS(t+ 1) =
aS2PS(t)

1 + cS2P (t)/N(t)

PI(t+ 1) =
aI2PI(t)

1 + cI2P (t)/N(t)

(4.3)

We can now build up the complete model combining the two processes as carried out in Section 2.3. To
study the models, whose writing we omit, we follow the reduction procedure of Appendix A.1 and end up
with the following reduced system, where N is the number of preys and P = PS + PI the total number
of predators.

N(t+ 1) =
a1NS(t)

1 + b1N(t) +
(
ν∗cS1 + (1− ν∗)cI1

)
P (t)

P (t+ 1) =
ν∗aS2P (t)

1 + cS2P (t)/N(t)
+

(1− ν∗)aI2P (t)

1 + cI2P (t)/N(t)

(4.4)

The asymptotic behaviour of the solutions of system (4.4) is analyzed in Theorem A.5, and with the help
of Theorem A.2 we can extend the results to the solutions (N(t), PS(t), PI(t)) of the complete system.
We state here the results for the case R0 > 1 where the disease becomes endemic:

1. If a1 ≤ 1 all positive initial conditions approximately tend (0, 0, 0).
2. If a1 > 1 and aS2 /R0 + (1 − 1/R0)aI2 ≤ 1 all positive initial conditions approximately tend to

((a1 − 1)/b1, 0, 0).
3. If a1 > 1 and aS2 /R0 + (1− 1/R0)aI2 > 1 the system has an equilibrium point which is asymptotically

stable and can be approximated by (N∗, P ∗/R0, (1− 1/R0)P ∗), where (N∗, P ∗) is given by (A.10).

Let us extract some brief conclusions. If the prey is not viable without the disease, this is still the case
with it and so the community goes extinct. The disease can eliminate the predators from the community,
and this happens independently of the parameters a1, b1, cS1 and cI1 characterizing the dynamics of the
prey. Moreover, the disease can keep the community in an equilibrium in which the total populations of
prey and predators are a function of disease and disease-mediated parameters.

9
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5. Conclusion.

We present in this work a model of a predator-prey community with parasites that infect one of the
two species, focusing on the case of infected prey. The treatment of the subject differs from most of the
existing literature in two aspects: the model is in discrete time and the parasites dynamics occurs on a
shorter time scale than the predator-prey interactions. We keep this work simple enough to be able to find
analytic results stressing the effects of the disease on the community. The Leslie-Gower model that we use
to describe the community dynamics without disease has a simple long term behaviour that it is inherited
in its simplicity by the complete system that encompasses predator-prey-parasite dynamics. Assuming
that the disease is endemic, there exist three different possibilities of long term behaviour: extinction
of the whole community, extinction of the predator species with stabilization of the prey species, and
coexistence of the two species at stable population sizes. In the last two cases, in addition, there are
constant proportions of susceptible and infected preys.

Parasites infecting prey species can be considered competing with predators for the resource: the
prey/host species. Different from more classical models of exploitative competition for an explicit resource,
the model presented in this work admits that both competing species coexist on the single resource. The
endemicity of the disease depends on the transmission-recovery ratio, R0 > 1, and does not change with
populations densities, thus parasites persist if prey do. On the other hand, predators viability depends
on their growth rate a2 being greater than one. The coexistence of the module predator-prey-parasite
depends then on the weighted mean of susceptible and infected prey growth rates, aS1 and aI1:

aS1 /R0 + (1− 1/R0)aI1 > 1,

where the weights are the constant proportions of susceptible and infected preys. Out of this inequality
it is easy to find conditions for a disease to drive extinct an otherwise population in coexistence and
vice-versa.

Parasites infecting only the predator species can be considered as their consumers so that the module
predator-prey-parasite turns out to be a linear food chain with parasites as super-predators. Assuming
R0 > 1 and the prey growth rate a1 > 1, the coexistence of the module depends now on:

aS2 /R0 + (1− 1/R0)aI2 > 1,

the weighted mean of susceptible and infected predators growth rates, aS1 and aI1. In this case the disease
can just alter the fate of predators since prey is regulated in the absence of predator and parasite.

In the conditions for coexistence of the module predator-prey-parasite, the effects of the disease can
be analyzed by comparing the stable sizes, with and without disease, of the populations of prey, N∗ and
n∗, and predator, P ∗ and p∗. The parameter dI modeling the relative contribution of infected prey to
predator growth has a direct influence on the stable structure of the predator-prey community; keeping all
the other parameters constant, dI < 1 entails a stronger effect of the disease on the number of predators
than its effect on the number of prey P ∗/p∗ < N∗/n∗; the contrary happens if dI > 1. If the disease
affects negatively (resp. positively) the growth of infected prey, aI1 < aS1 (resp. aI1 > aS1 ), and the infected
prey contribution to predator growth is larger (resp. less) than the susceptible one, dI > 1 (resp. dI < 1),
then the size of both populations decreases (resp. increases), N∗ < n∗ and P ∗ < p∗ (resp. N∗ > n∗ and
P ∗ > p∗). If predators attack infected prey more (resp. less) frequently than susceptible prey, cI1 > cS1
(resp. cI1 < cS1 ) then, assuming the rest of parameters unaltered by the disease, both populations decrease
(resp. increase).

10
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Appendices

A.1. Reduction procedure

The coupled dynamics of any three component (NS , NI and P ) system in discrete time can be modeled
as:

NS(t+ 1) = fS(NS(t), NI(t), P (t))

NI(t+ 1) = fI(NS(t), NI(t), P (t))

P (t+ 1) = g(NS(t), NI(t), P (t))

Supposing that the first two component of the community (NS and NI) correspond to the susceptible
and infected individuals of a species affected by a disease, as described in section 2.1, a general complete
model that includes species interactions on a slow time scale and disease action on a fast time scale would
read as follows:

NS(t+ 1) = fS
((

Fk
)
S

(NS(t), NI(t)),
(
Fk
)
I

(NS(t), NI(t)), P (t)
)

NI(t+ 1) = fI
((

Fk
)
S

(NS(t), NI(t)),
(
Fk
)
I

(NS(t), NI(t)), P (t)
)

P (t+ 1) = g
((

Fk
)
S

(NS(t), NI(t)),
(
Fk
)
I

(NS(t), NI(t)), P (t)
) (A.1)

where (Fk)S(NS(t), NI(t)) and (Fk)I(NS(t), NI(t)) are the first and the second components of the k-th
iterate of the map F describing the disease process.

Assuming that the fast process has attained its equilibrium (2.6), the dynamics of the variables N =
NS +NI and P are governed by the following system

N(t+ 1) = fS (ν∗N(t), (1− ν∗)N(t), P (t)) + fI (ν∗N(t), (1− ν∗)N(t), P (t))

P (t+ 1) = g (ν∗N(t), (1− ν∗)N(t), P (t))
(A.2)

where ν∗ = 1 if β ≤ γ and ν∗ = γ/β if γ < β ≤ 2 + γ.

The asymptotic behaviour of the solutions of systems (A.1) and (A.2) can be related by making use
of results in [19] regarding approximate reduction techniques. The condition for the results to hold is
that F(k) converges to F̄ uniformly on compact sets and the same happens with their differentials, i.e.,
limk→∞DF(k)(NS , NI) = DF̄(NS , NI) uniformly on compact sets. Now we proceed to prove these facts:

Lemma A.1. Let F defined in (2.2)

F(NS , NI) =

(
NS −

βNSNI
NS +NI

+ γNI , NI +
βNSNI
NS +NI

− γNI
)
,

with the positive parameters β and γ verifying conditions (2.3), γ ≤ 1 and β <
(
1 +
√
γ
)2

, and (2.4),
β < 2 + γ. Then the following two limits exist uniformly on compacts sets of Ω := [0,∞)× (0,∞):

1. lim
k→∞

F(k)(NS , NI) = F̄(NS , NI) = (ν∗N, (1− ν∗)N), with N = NS +NI .

2. lim
k→∞

DF(k)(NS , NI) = DF̄(NS , NI) =

(
ν∗ ν∗

1− ν∗ 1− ν∗
)

.

Proof. We can write F in terms of the polinomial function φ(x) = x (1 + β(1− x)− γ):

F(NS , NI) = ((1− φ(NI/N))N,φ(NI/N)N) (A.3)

and, having in mind that F keeps N constant, we can also express its k-th iterate in terms of φk, the
k-th iterate of φ:

Fk(NS , NI) =
(
(1− φk(NI/N))N,φk(NI/N)N

)
. (A.4)

11
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R. Bravo de la Parra, M. Marvá, E. Sánchez, L. Sanz Discrete eco-epidemiological model

For any compact set C ⊂ Ω let us define MC = max
(NS ,NI)∈C

(NS + NI), αC = min
(NS ,NI)∈C

NI/N > 0 and

βC = max
(NS ,NI)∈C

NI/N ≤ 1. We then have

max
(NS ,NI)∈C

‖Fk(NS , NI)− F̄(NS , NI)‖ = max
(NS ,NI)∈C

N
∥∥(1− φk(NI/N)− v∗, φk(NI/N)− 1 + v∗

)∥∥ ≤
≤
√

2MC max
(NS ,NI)∈C

|φk(NI/N)− (1− ν∗)| ≤
√

2MC max
x∈[αC ,βC ]

|φk(x)− (1− ν∗)|

Now it is straightforward to see that the scalar difference equation xt+1 = φ(xt) with initial conditions
x0 ∈ [αC , βC ] ⊂ (0, 1] converges monotonically, and therefore uniformly in [αC , βC ], to 1− v∗. Therefore
the first limit converges uniformly in compact sets as we wanted to show. To prove the uniform convergence
of the second limit we first express the differential of Fk in terms of the derivative of φk:

DFk(NS , NI) =

1− φk(NI

N ) + NI

N (φk)′(NI

N ) 1− φk(NI

N ) + (NI

N − 1)(φk)′(NI

N )

φk(NI

N )− NI

N (φk)′(NI

N ) φk(NI

N ) + (1− NI

N )(φk)′(NI

N )


which can be decomposed as

DFk(NS , NI) =

1− φk(NI

N ) 1− φk(NI

N )

φk(NI

N ) φk(NI

N )

+ (φk)′(NI/N)


NI

N
NI

N − 1

− NI

N 1− NI

N


As a consequence of the first limit we have that

lim
k→∞

 1− φk(NI

N ) 1− φk(NI

N )

φk(NI

N ) φk(NI

N )

 =

 ν∗ ν∗

1− ν∗ 1− ν∗
 = DF̄(NS , NI)

uniformly on compacts sets of Ω. So, bearing in mind that


NI

N
NI

N − 1

− NI

N 1− NI

N

 is bounded, to finish the

proof we only need to show that the following limit is uniform on compact sets of (0, 1]

lim
k→∞

(φk)′(x) = 0,

Since |φ′(1 − v∗)| < 1 there exist α < 1 and a neighbourhood I ⊂ (0, 1] of 1 − ν∗ such that for every
x ∈ I we have |φ′(x)| < α. Now, the uniform convergence to 1−ν∗ of the solutions of the scalar difference
equation xt+1 = φ(xt) with initial conditions x0 ∈ (0, 1] and the chain rule to calculate (φk)′(x) complete
the proof. �

The next theorem relates the asymptotic behavior of systems (A.1) and (A.2) for big enough values of
parameter k.

Theorem A.2. Let us assume that fS , fI , g ∈ C1(R3
+) and that the hypotheses in Lemma A.1 hold. Let

(N∗, P ∗) be a hyperbolic equilibrium point of (A.2). Then there exists k0 ∈ N such that for each k ≥ k0
there exists a hyperbolic equilibrium point (N∗S,k, N

∗
I,k, P

∗
k ) of (A.1) satisfying

lim
k→∞

(
N∗S,k, N

∗
I,k, P

∗
k

)
= (ν∗N∗, (1− ν∗)N∗, P ∗) .

Moreover,

12
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R. Bravo de la Parra, M. Marvá, E. Sánchez, L. Sanz Discrete eco-epidemiological model

1. If (N∗, P ∗) is asymptotically stable (resp. unstable) then (N∗S,k, N
∗
I,k, P

∗
k ) is asymptotically stable (resp.

unstable) for each k ≥ k0.
2. In the case of (N∗, P ∗) being asymptotically stable, for each k ≥ k0, if (NS(0) + NI(0), P (0))

is in the basin of attraction of (N∗, P ∗) then (NS(0), NI(0), P (0)) is in the basin of attraction of
(N∗S,k, N

∗
I,k, P

∗
k ).

Analogous results hold for periodic solutions.

Proof. It is a direct consequence of the results in [19] defining

F (NS , NI , P ) =

(
NS −

βNSNI
NS +NI

+ γNI , NI +
βNSNI
NS +NI

− γNI , P
)
,

S(NS , NI , P ) = (fS(NS , NI , P ), fI(NS , NI , P ), g(NS , NI , P ))

and using Lemma A.1. �

A.2. Asymptotic behaviour of systems (2.11) and (4.4)

Theorem A.3. Let us consider system (2.12) with all its parameters being positive but α2 that we assume
to be nonnegative.

1. If α1 + α2 ≤ 1 then any solution (N(t), P (t)) of system (2.12) with positive initial conditions verifies

lim
t→∞

(N(t), P (t)) = (0, 0).

2. If α3 ≤ 1 and α1+α2 > 1 then any solution (N(t), P (t)) of system (2.12) with positive initial conditions
verifies

lim
t→∞

N(t) = N̄ and lim
t→∞

P (t) = 0,

with

N̄ =
(α2 − 1)β1 + (α1 − 1)β2 +

√
((1− α2)β1 + (1− α1)β2)

2
+ 4(α1 + α2 − 1)β1β2

2β1β2
. (A.5)

3. If α1 + α2 > 1 and α3 > 1 then system (2.12) possesses a unique positive equilibrium point (N∗, P ∗)
which is asymptotically stable:

N∗ =
(α2 − 1)β̄1 + (α1 − 1)β̄2 +

√(
(1− α2)β̄1 + (1− α1)β̄2

)2
+ 4(α1 + α2 − 1)β̄1β̄2

2β̄1β̄2

P ∗ =
(α3 − 1)N∗

γ3

(A.6)

with β̄1 = β1 + (α3 − 1)γ1/γ3 and β̄2 = β2 + (α3 − 1)γ2/γ3.

Proof.

1. Let (N(t), P (t)) be the solution of system (2.12) for initial conditions N(0) > 0 and P (0) > 0. For any

t ≥ 0, 0 < N(t+ 1) <
(α1 + α2)N(t)

1 + β̄N(t)
, with β̄ = min{β1, β2}. If we define g(x) = (α1 + α2)x/(1 + β̄x)

we see that it is an increasing function, what yields 0 < N(t) < g(t)(N(0)) for all t ≥ 0. As g(x) is a
continuous function from [0,∞) to [0,∞) verifying that 0 < g(x) < x for all x > 0 Theorem 2.5 in [2]
applies and we have that limt→∞ g(t)(x0) = 0 for any x0 > 0. This implies that 0 ≤ limt→∞N(t) ≤

limt→∞ g(t)(N(0)) = 0, that is, limt→∞N(t) = 0. On the other hand, P (t + 1) ≤ α3P (t)

γ3P (t)/N(t)
=

α3N(t)

γ3
, for t ≥ 0. So, limt→∞N(t) = 0 yields that limt→∞ P (t) = 0.

13
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2. Let (N(t), P (t)) be the solution of system (2.12) for initial conditions N(0) > 0 and P (0) > 0. We are

using the family of functions fδ for δ ≥ 0, defined as:

fδ(x) =
α1x

1 + β1x+ δ
+

α2x

1 + β2x+ δ
.

We notice that f0(x) < α1/β1 + α2/β2 for all x > 0. As N(t + 1) < f0(N(t)) we also have that

N(t) < α1/β1+α2/β2 for all t > 0. From the last inequality we deduce that P (t+1) <
α3P (t)

1 + γ̄P (t)
, where

γ̄ =
γ3

α1/β1 + α2/β2
. Thus α3 ≤ 1 implies, reasoning as in the previous item, that limt→∞ P (t) = 0. To

prove the convergence of N(t) we first characterize the asymptotic behaviour of the positive solutions
of the difference equation x(t + 1) = fδ(x(t)). We have that fδ(0) = 0, fδ(x) > 0 for x > 0, and

limx→∞ fδ(x) = α1/β1 +α2/β2. We also have f ′δ(x) =
α1(1 + δ)

(1 + β1x+ δ)2
+

α2(1 + δ)

(1 + β2x+ δ)2
> 0 so that fδ

is strictly increasing and f ′δ strictly decreasing for x > 0. If α1 + α2 > 1 then f ′δ(0) =
α1 + α2

1 + δ
> 1 for

δ < α1 +α2− 1. Now it is straightforward to prove that x(t+ 1) = fδ(x(t)) possesses a unique positive
fixed point

x∗δ =
(α2 − 1− δ)β1 + (α1 − 1− δ)β2 +

√
((1− α2 + δ)β1 + (1− α1 + δ)β2)

2
+ 4(1 + δ)(α1 + α2 − 1− δ)β1β2

2β1β2
.

Moreover, function fδ verifies that x < fδ(x) < x∗δ for x ∈ (0, x∗δ) and x∗δ < fδ(x) < x for x ∈ (x∗δ ,∞)

what implies (Theorem 2.8 in [2]) that limt→∞ f
(t)
δ (x0) = 0 for any x0 > 0. We now use the fact that

limt→∞ P (t) = 0, what implies that for any δ > 0 there exists tδ ≥ 0 such that for any t ≥ tδ we have

that max{γ1P (t), γ2P (t)} ≤ δ, and also, calling F (N,P ) =
α1N

1 + β1N + γ1P
+

α2N

1 + β2N + γ2P
, that

fδ(N(t)) ≤ F (N(t), P (t)) ≤ f0(N(t)).

As fδ is an increasing function we obtain the following inequalities:

F (N(t+ 1), P (t+ 1)) ≤ f0(N(t+ 1)) = f0 (F (N(t), P (t))) ≤ f0 (f0(N(t))) = f
(2)
0 (N(t)),

f
(2)
δ (N(t)) = fδ (fδ(N(t))) ≤ fδ (F (N(t), P (t))) = fδ(N(t+ 1)) ≤ F (N(t+ 1), P (t+ 1))

and by induction, for any k > 0, that

f
(k)
δ (N(t)) ≤ F (N(t+ k), P (t+ k)) ≤ f (k)0 (N(t))

Letting δ tend to 0 and using the continuity of fδ respect to δ, we obtain

f
(k)
0 (N(t)) ≤ F (N(t+ k), P (t+ k)) ≤ f (k)0 (N(t))

and now, making k tend to ∞ it follows that

lim
t→∞

N(t) = x∗0 = N̄ .

3. The equilibrium points of system (2.12) are the solutions (N∗, P ∗) of the next system
1 =

α1

1 + β1N∗ + γ1P ∗
+

α2

1 + β2N∗ + γ2P ∗

1 =
α3

1 + γ3P ∗/N∗

14
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Solving the second equation we obtain P ∗ =
α3 − 1

γ3
N∗, where we see that α3 > 1 is a necessary

condition for a positive equilibrium point to exist. Substituting into the first equation we get

1 =
α1

1 + β̄1N∗
+

α2

1 + β̄2N∗
(A.7)

where β̄1 = β1 + (α3 − 1)γ1/γ3 and β̄2 = β2 + (α3 − 1)γ2/γ3. This equation becomes

β̄1β̄2(N∗)2 +
(
(1− α2)β̄1 + (1− α1)β̄2

)
N∗ + 1− (α1 + α2) = 0

from where we see that α1 + α2 > 1 is the necessary and sufficient condition for the existence of a
positive solution, which moreover is unique:

N∗ =
(α2 − 1)β̄1 + (α1 − 1)β̄2 +

√(
(1− α2)β̄1 + (1− α1)β̄2

)2
+ 4(α1 + α2 − 1)β̄1β̄2

2β̄1β̄2

We prove the asymptotic stability of the equilibrium point (N∗, P ∗) of system (2.12) by linearization.
The jacobian of the transformation at (N∗, P ∗) is

J(N∗, P ∗) =


1− α1β1N

∗(
1 + β̄1N∗

)2 − α2β2N
∗(

1 + β̄2N∗
)2 − α1γ1N

∗(
1 + β̄1N∗

)2 − α2γ2N
∗(

1 + β̄2N∗
)2

(α3 − 1)2

α3γ3

1

α3


where we have used (A.7) in order to obtain position (1, 1). We complete the proof by proving that
J(N∗, P ∗) verifies the Jury conditions, i.e., |Tr(J(N∗, P ∗))| < 1 + det(J(N∗, P ∗)) < 2. We begin by
proving that the trace of J(N∗, P ∗) is positive. Having in mind equality (A.7),

Tr(J(N∗, P ∗)) = 1− α1β1N
∗(

1 + β̄1N∗
)2 − α2β2N

∗(
1 + β̄2N∗

)2 +
1

α3

=
1

α3
+ 1−

(
α1

1 + β̄1N∗
β1N

∗

1 + β̄1N∗
+

α2

1 + β̄2N∗
β2N

∗

1 + β̄2N∗

)
≥ 1

α3
+ 1−max

{
β1N

∗

1 + β̄1N∗
,

β2N
∗

1 + β̄2N∗

}
>

1

α3
> 0.

where in the second to last inequality we have used that β̄1 ≥ β1, β̄2 ≥ β2. Next we prove that
det(J(N∗, P ∗)) < 1. Still using (A.7),

det(J(N∗, P ∗)) =
1

α3

(
1− α1β1N

∗(
1 + β̄1N∗

)2 − α2β2N
∗(

1 + β̄2N∗
)2
)

+
(α3 − 1)2

α3γ3

(
α1γ1N

∗(
1 + β̄1N∗

)2 +
α2γ2N

∗(
1 + β̄2N∗

)2
)

<
1

α3
+

(α3 − 1)2

α3γ3

(
α1

1 + β̄1N∗
γ1N

∗

1 + β̄1N∗
+

α2

1 + β̄2N∗
γ2N

∗

1 + β̄2N∗

)
<

1

α3
+

(α3 − 1)2

α3γ3
max

{
γ1N

∗

1 + β̄1N∗
,

γ2N
∗

1 + β̄2N∗

}
<

1

α3
+

(α3 − 1)2

α3γ3

γ3
α3 − 1

= 1.

where in the last inequality we have used that 1 + β̄iN
∗ > (α3 − 1) γi/γ3 for i = 1, 2. Finally we prove

that |Tr(J(N∗, P ∗))| < 1 + det(J(N∗, P ∗)), that is, det(J(N∗, P ∗)) + 1− Tr(J(N∗, P ∗)) > 0:

det(J(N∗, P ∗)) + 1− Tr(J(N∗, P ∗)) =
1

α3

(
1− α1β1N

∗(
1 + β̄1N∗

)2 − α2β2N
∗(

1 + β̄2N∗
)2
)

+
(α3 − 1)2

α3γ3

(
α1γ1N

∗(
1 + β̄1N∗

)2 +
α2γ2N

∗(
1 + β̄2N∗

)2
)

+
α1β1N

∗(
1 + β̄1N∗

)2 +
α2β2N

∗(
1 + β̄2N∗

)2 − 1

α3

=
α3 − 1

α3

(
α1β1N

∗(
1 + β̄1N∗

)2 +
α2β2N

∗(
1 + β̄2N∗

)2
)

+
(α3 − 1)2

α3γ3

(
α1γ1N

∗(
1 + β̄1N∗

)2 +
α2γ2N

∗(
1 + β̄2N∗

)2
)
> 0.
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�

Theorem A.4. System (2.12) without predators is the following difference equation:

N(t+ 1) =
α1N(t)

1 + β1N(t)
+

α2N(t)

1 + β2N(t)
. (A.8)

in which we consider that all its parameters are positive but α2, that we assume to be nonnegative.

1. If α1 + α2 ≤ 1 then any solution N(t) of equation (A.8) with positive initial condition verifies

lim
t→∞

N(t) = 0.

2. If α1 + α2 > 1 then any solution N(t) of equation (A.8) with positive initial condition verifies

lim
t→∞

N(t) = N̄ ,

where N̄ is given by (A.5).

Proof. Analogous to the two first items of the previous theorem. �

Theorem A.5. Let us consider the reduced system (4.4), corresponding to the case in which the disease
affects the predator, in the following simplified form

N(t+ 1) =
α1N(t)

1 + βN(t) + γ1P (t)

P (t+ 1) =
α2P (t)

1 + γ2P (t)/N(t)
+

α3P (t)

1 + γ3P (t)/N(t)

(A.9)

and let us assume that all the parameters are positive but α3, that we assume to be nonnegative.

1. If α1 ≤ 1 then any solution (N(t), P (t)) of system (A.9) with positive initial conditions verifies

lim
t→∞

(N(t), P (t)) = (0, 0).

2. If α1 > 1 and α2+α3 ≤ 1 then any solution (N(t), P (t)) of system (2.12) with positive initial conditions
verifies

lim
t→∞

(N(t), P (t)) = ((α1 − 1)/β, 0) .

3. If α1 > 1 and α2 + α3 > 1 then system (A.9) possesses a unique positive equilibrium point (N∗, P ∗)
which is asymptotically stable:

N∗ =
2(α1 − 1)γ2γ3

2βγ2γ3 + γ1

(
(α2 − 1)γ3 + (α3 − 1)γ2 +

√
((α2 − 1)γ3 + (α3 − 1)γ2)

2
+ 4(α2 + α3 − 1)γ2γ3

)
P ∗ =

α1 − 1− βN∗

γ1
(A.10)

Proof. Analogous to the proof of Theorem A.3. �
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[6] Benjamin Bolker, Marcel Holyoak, Vlastimil Křivan, Locke Rowe, and Oswald Schmitz. Connecting theoretical and
empirical studies of trait-mediated interactions. Ecology, 84(5):1101–1114, 2003.

[7] Fred Brauer. Mathematical epidemiology is not an oxymoron. BMC Public Health, 9(1):1, 2009.
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