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A B S T R A C T

In this work, we analyze the interplay between general age structured density-dependent fertility functions and
age classes dispersal in a patchy environment. As novelties, (i) the fertility function depends on age classes
(instead of on the total population size) and (ii) dispersal patterns are also allowed to be different for individuals
belonging to different age classes.

Our results highlight the interplay between the shape of the age structured density-dependent fertility
function and the age classes dispersal patterns. We analyze this interaction from an environmental management
point of view by exploring the consequences of connecting patches that can sustain a population (source patch)
or cannot (sink patch), as well as its relation to component Allee effects and strong Allee effects.

In particular, we have found scenarios such that the metapopulation goes extinct when two isolated source
patches are connect due to heterogeneous age classes distribution. On the contrary, there are settings such that
heterogeneous age classes distribution enables two isolated sink patches to be sustainable when connected.
Besides, we discuss what kind of local interventions are helpful to manage component Allee effect and its impact
at the metopopulation level.

The source code used to simulations is fully available. The code is presented as a knitr reproducible document
in the open source R computing system. Thus, free access and usability of the code are granted.

1. Introduction

A key process in the survival of an age structured population is the
way new reproductive individuals are incorporated to the community.
Adult reproductive individuals die sooner or later, and the replace-
ment/renewal strategy is crucial in order to keep the fitness of the
population.

There is a wide range of mechanisms either pushing juvenile and
adult individuals to remain together or leading them to occupy mostly
separated areas. For instance, in small mammals ecology the usual as-
sumption is that adults follow juveniles when they disperse [41]. On the
other hand, juveniles dispersal (away from adults) is a mechanism to
avoid consanguinity by inbreeding with close relatives [17], competi-
tion for resources or mating due to density-dependent effects [21]. In-
deed, it is broadly recognized that many vital rates are density-depen-
dent [8,28], as the fertility rate [11,12]. A particular (but very
important) case [10] is that of component Allee effects that, following
[12], are density-dependent parameters of the model with positive
feedback effects at low population density. That is to say that at low
population density the fitness of the population worsens as the

population density decreases. If the weight on the model of this com-
ponent is “strong” enough, it can lead to the existence of a population
threshold below which a population would go extinct.

Apart from these density-dependent dispersal drivers, it is accepted
that human activity plays an important role in populations dispersal
regardless of being intentional [20] or a side effect [21].

This work deals with an age structured population inhabiting a
patchy environment and we analyze the effect of age classes dispersal
among patches for different density-dependent fertility functions [11]
that may include component Allee effects. The novelties consist of:

1. Generalize those fertility functions presented in [38,39] by in-
troducing age structure.

2. Let individuals of each age class to disperse in an independent way
[1].

We assume that both maturation and dispersal processes are com-
pleted in the time elapsed between two reproduction periods [4]. In
particular, it means that the dispersal process is at equilibrium before
the next reproduction period takes place (see Section 2 for further
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details). In other words, dispersal and demography events take place at
different time scales [4,27,36]. Understanding how ecological phe-
nomena interact across temporal scales is important in theoretical
ecology [22,25], since it is known that differences in process time scales
may be critical for system dynamical behavior [22,24,26].

We analyze the aforementioned two time scales system using ap-
proximate aggregation techniques [5] and bifurcation techniques for
Leslie-like nonlinear matrices [11]. There are other works considering
both dispersal (that requires of spatial structure) and age structure,
even considering time scales, as [29,37], that, nevertheless, do not
consider age structured density-dependent fertility functions nor the
consequences of different dispersal schemes.

Our results highlight the key role of age classes dispersal and age
classes density-dependent fertility in the global dynamics of popula-
tions inhabiting fragmented habitats. It turns out that the dynamics of a
spatially distributed age structured population can be sensitive not only
to whether juvenile and adult individuals remain together in a given
patch (increasing population density there) or occupy mostly separated
regions, but also to whether the age classes structure is homogeneous
(similar proportion of individuals of both age classes at each patch) or
heterogeneous.

We relate these features with two popular management tools in the
design of species conservation or species control strategies: the con-
struction of corridors between patches allowing individuals to disperse
[15,32] and the implementation of refuges, artificial habitats or pro-
tected areas [6,31,40]. In particular, we have found conditions that lead
to population extinction (respectively, survival) in source-source pat-
ches (respectively, in sink–sink patches) such that the contrary outcome
would happen if the populations in the patches had remained isolated.
These apparently counterintuitive results are explained in terms of
heterogeneous age classes distribution between patches.

Furthermore, our results point out that, if not all the patches present
component Allee effects, there exist dispersal rates that either “silence”
the component Allee effects or enhance them so that an Allee popula-
tion threshold appears for the entire population. This findings may help
environment managers to determine what interventions are the ap-
propriate ones (and which are ineffective) to control the population
dynamics.

Part of our results are illustrated through simulations, and the
source code to compute bifurcation diagrams and other simulations at
[16]. The code is presented as a knitr [42] reproducible document
available from an open GitHub repository [16] in the open source R
computing system [30]. In particular, this feature allows other re-
searchers to reproduce our simulations or to perform simulations of
their interest and not covered in the manuscript.

This work is organized as follows. In Section 2, we build up the
model upon a slow-fast system and we apply the aforementioned di-
mension reduction techniques to derive the reduced system. In
Section 3, we analyze the original model through the reduced system

aided by bifurcation techniques. Section 4 is devoted to the discussion
of results. Appendix A contains technical details on the dimension re-
duction process (Appendix A.1) and the derivation of the main bi-
furcation parameter (Appendix A.2).

2. Presentation of the model

We consider an age structured population with two age classes:
juvenile (immature) and adult (mature) individuals. The population is
further assumed to inhabit a fragmented habitat consisting of N pat-
ches, and individuals are allowed to move between patches. We denote
Ji and Ai, respectively, the densities of juveniles and adults in patch

= …i N1, , . The population vector is
⎯→⎯

= … …N J J A A( , , , , , ) ,N N
T

1 1

where T denotes transposition. We also use the following notation

∑ ∑= = → =
= =

J J A A n J A, , ( , ) ,
i

N

i
i

N

i
T

1 1

for the total number of juvenile and adult individuals. We denote +
m

the non negative cone and +
m stands for the positive cone in m.

In the sequel, we describe the two processes involved in the model:
demography and dispersal.

2.1. Slow process: demography

Demography is described by means of a density-dependent Leslie
matrix. On the one hand, let σi

J and σi
A be the constant fraction of the

juveniles and adults in patch = …i N1, , alive at time t that survive to
time +t 1. The survival rates, σi

J and σi
A lie between 0 and 1.

On the other hand, let ϕi(Ji, Ai) be the number of juveniles at time
+t 1 produced by an adult at time t in patch = …i N1, , . We assume

that ϕi depends on the population structure, juveniles and adults, in the
corresponding patch. The fertility functions are strictly positive, ϕi(0,
0)> 0 and =→∞ϕ J Alim ( , ) 0J A i i i( , )i i . The usual assumption when the
fertility function ϕi depends on the total population is that it is either
strictly decreasing [38,43] or unimodal [39]. Keeping this features in
mind and taking into account that the age structure of the population
allows the fertility function to depend on J and A, we consider three
basic shapes that generalize those presented in [38,39]:

• We say that ϕ(J, A) is of class C1 if there is negative feedback on J
and A, what is to say that it is strictly decreasing with respect both
variables, as in the left panel of Fig. 1. The fertility decreases as the
number of juvenile/adult individuals increases due to competition
for resources [10].

• We say that ϕ(J, A) is of class C2 if it is an unimodal function [39] in
both variables, as in the surface in the center panel of Fig. 1 (see also
[7]). In this case, there is negative feedback at high population

Fig. 1. Shapes of the fertility functions considered. We will use these precise expressions for simulations throughout the manuscript. Left: class C1, strictly decreasing
with respect to both variables, = − +ϕ J A ψ a J a A( , ) exp( ))J A1 1 . Center: class C2, unimodal with respect to both variables, = + − −ϕ J A ψ JA a J a A( , ) ·(1 )exp( ))J A .
Right: class C3, strictly decreasing with respect to the number of juveniles and unimodal with respect to the number of adult individuals,

= + − −ϕ J A ψ A a J a A( , ) ·(1 )exp( ))J A . In all figures =ψ 50, = =a a 0.085,J A 0≤ J, A≤ 50.
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densities (as for class C1) and there is positive feedback at low po-
pulation densities, i.e. the fertility rate decreases as the number of
either juvenile or adult individuals decreases. For instance, re-
garding adults, in sexual reproduction, low densities of adult in-
dividuals implies difficulties to find mates, or a reduction on polli-
nation effectiveness due to low plant population density [10]. On
the other hand, when juveniles contribute to the welfare of the
population (foraging efficiency, helper role in obligate cooperative
breeders, surveillance tasks,...) at low population densities a de-
crease in the number of juveniles may entail a worsening of the
population’s fitness by lowering fertility (and/or survival) rate (see
[10, Table 2.1] and references therein).

• A new class C3 can be considered. Namely, ϕi is strictly decreasing
with respect J and unimodal on A. This can occur if a large number
of juveniles requires a large number of adults dedicated to parental
tasks and not available for reproduction. Besides, the function is
unimodal with respect to A because of the reasons described before.
The surface in the right panel of Fig. 1 displays this feature.

Finally, some regularity will be needed for the mathematical analysis,
so that we ask  ∈ + +ϕ C ( , ),i

1 2 for =i 1, 2, 3.
The demography is described thus by the map

⎯→⎯
↦

⎯→⎯ ⎯→⎯
N N N( )·S

where
⎯→⎯
N( )S is the following density-dependent Leslie-like matrix

⎜ ⎟
⎯→⎯

= ⎛

⎝

⎯→⎯ ⎞

⎠
N ϕ N

ex ex
( ) 0 ( )

0 3 Σ ΣJ A
S

and ϕ, ΣJ and ΣA are diagonal matrices of dimension N×N as follows:
⎯→⎯

= …ϕ N ϕ J A ϕ J A( ) diag( ( , ), , ( , )),N N N1 1 1 = …σ σΣ diag( , , ),J
J

N
J

1 =ΣA

…σ σdiag( , , )A
N
A

1 . Therefore, demography dynamics is defined by

⎯→⎯
+ =

⎯→⎯ ⎯→⎯
N t N t N t( 1) ( ( )) ( )S

where t is the maturation time. We use capital calligraphic letters to
denote matrices all along the manuscript.

2.2. Fast process: dispersal

Juvenile and adult dispersal rates are supposed to be constant and
are represented by stochastic matrices

=
⎛

⎝
⎜
⎜

⋯
⋯ ⋯ ⋯

⋯

⎞

⎠
⎟
⎟

=
⎛

⎝
⎜
⎜

⋯
⋯ ⋯ ⋯

⋯

⎞

⎠
⎟
⎟

p p

p p

p p

p p
, ,J

J
N
J

N
J

NN
J

A

A
N
A

N
A

NN
A

11 1

1

11 1

1

F F

where < <p0 1ij
θ stands for the fraction of individuals of class =θ J A,

leaving patch j towards patch i, i≠ j and pii
θ stands for the fraction of

individuals that remain at patch i. Therefore, dispersal is given by the
map

⎯→⎯
↦

⎯→⎯
N NF where = diag( , )J AF F F is a block diagonal matrix

and and the dispersion process is defined by

⎯→⎯
+ =

⎯→⎯
N t N t(^ 1) (^)F

where t̂ stands for the time elapsed for each dispersal event, that is
supposed to be much sorter that the maduration time t.

2.3. The complete system

We build up now the so called complete model combining the two
processes presented in Sections 2.1 and 2.2. We assume that all juve-
niles either die or mature becoming adults [4,11] and reproduction
takes place once within each unit of time t. Dispersal events are con-
sidered to be much more frequent that demographic processes, so that
we consider them acting at different time scales [4,36]. We must choose
the time unit for the model as the time unit associated to each process
are supposed to be quite different. If we choose the faster one, only a
“fraction” of the demographic process would take places within each

time unit, what makes no sense. Thus, we choose the unit of time t of
the slow process (demography) for the model, so that several dispersal
events, lets say k, take place between t and +t 1. By reasoning se-
quentially we let F act k times, ,kF followed by ,S obtaining a two
time scales difference equations system of the general form [34]
⎯→⎯

+ =
⎯→⎯ ⎯→⎯

N t N t N t( 1) ( ( )) ( )k kS F F (1)

Note that, even when considering just two patches, it may be compli-
cated, unfeasible or useless to get an explicit expression for the equation
system , and things get worse and worse as the number of patches in-
creases. Hopefully, such a difficulty can be overcome by assuming that
the ratio between unit time is large enough.

2.4. Approximate aggregation of system (1)

In this section we sketch a procedure (see Appendix A.1. or [34] for
details) that allows to analyze system (1) by means of a lower dimen-
sional system for large enough values of k. The fast process is described
by means of a regular stochastic matrix, and the Perron Frobenius
theorem [35] guarantees the existence of the limit

=
→∞
lim .

k
kF F

It means that the spatial distribution of juvenile and adult individuals
reaches an equilibrium, denoted by μJ and μA. Namely,

= …μ μ μ( , , )θ
θ

N
θ

1 (2)

where μi
θ stands for the fraction of individuals of age class θ∈ {J, A} at

patch = …i N1, , . Let us recall that (μJ, μA) is the solution of the linear
equations system

⎯→⎯
=

⎯→⎯
∑ ==X X X, 1i

N
i1F . Besides, we use such a limit

to build up the auxiliary system, that does not depend on k,

⎯→⎯
+ =

⎯→⎯ ⎯→⎯
N t N t N t( 1) ( ( )) ( )S F F (3)

The relation between systems (1) and (3) is fully described in [34].
Furthermore, following [34] (see Appendix A.1 here) yields the so
called aggregated system (see (16)):

⎜ ⎟
→ + = ⎛

⎝

→ ⎞
⎠

→ = → →n t ϕ n t
ex exσ σ

n t n t n t( 1) 0 ( ( ))
0 3

( ) ( ( )) ( )
J A

L
(4)

where

∑ ∑ ∑= = =
= = =

ϕ J A μ ϕ μ J μ A σ μ σ σ μ σ( , ) ( , ), , .
i

N

i
A

i
J

i
A

J
i

N

i
J J

A
i

N

i
A A

1
1

1
1

1
1

(5)

Note that the entries of matrix →n( )L are a sort of average of the
components of the local dynamics weighted by the asymptotic spatial
distribution of the individuals of each age class.

The following result, that is a restatement of one of the main results
in [34] describes the relation between the complete (1), the auxiliary
(3) and the reduced (4) systems.

Theorem 2.1. Consider system (1) and let be a hyperbolic equilibrium point
of the aggregated system (4). Then


⎯→⎯

= ∈N μ J μ A* ( *, *)J A
T N2

is a hyperbolic equilibrium point of system (3) with the same stability
properties as →n *, where μJ and μA are defined in (2) (see (15)). Also, there
exists ∈k0 such that for each k≥ k0 there exists a hyperbolic equilibrium

point 
⎯→⎯

∈N *
k

N2 of system (1) such that

⎯→⎯
=

⎯→⎯
→∞

N Nlim * *
k

k

1. If →n * is asymptotically stable then
⎯→⎯
N *

k is asymptotically stable for each

k≥ k0, and the basins of attraction of each
⎯→⎯
N *

k can be described in
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terms of the basins of attraction of →n *.
2. If →n * is unstable then

⎯→⎯
N *

k is unstable, for each k≥ k0.

The previous results hold for hyperbolic periodic solutions of the ag-
gregated system.

Proof. See comments at the end of Appendix A.1. □

3. Analysis of the model

We are obviously interested in ascertain whether the population
goes extinct or not and, if not, its long term behavior. A first observation
is that → = →n 0 is a solution of system (4); whether → = →n 0 is stable or
unstable determines whether the population goes extinct or not.

Both the complete system (1) and the aggregated system (4) are well
defined, meaning that both systems evolve within the corresponding
non-negative cones, since all of the coefficients involved in the equa-
tions are non negative. The following result states that the solutions of
the aggregated system are bounded regardless of the (non negative)
initial values; a similar result can be derived for the complete system (it
cannot be derived from Theorem 2.1, but the proof is similar).

Theorem 3.1. There exists < ∈M0 such that for any → ∈ +n 2 with
→ ≥n M it holds that

→ ≤ →n n( )L

Proof. From the definition of map s in (4) we get that

→ ≤ + +s n σ J σ A ϕ J A A( ) ( , ) .J A (6)

Besides, using (5), it follows that

≤ = < ≤ = <σ σ σ σ σ σ σ σ: max{ , } 1, : max{ , } 1.J J J J A A A A
1 2 1 2

Therefore, using the previous bounds in (6) we get that

→ ≤ + → →s n σ σ ϕ n n( ) (max{ , } ( ) ) .J A

We have assumed that → =→∞ϕ xlim ( ) 0,x i for = …i N1, , . Then, there
exists M>0 such that → < −ϕ x σ σ( ) 1 max{ , }i J A for any →x such that
→ ≥x M, which finishes the proof. □

3.1. Population survival and dispersal

The survival of the population can be analyzed by means of the
stability of the zero solution. Remarkably, the reduced system is driven
by a density-dependent Leslie matrix. In this context, a key quantity
characterizing the long term behavior of the system is the inherent net
reproductive number denoted here by ν which, according to [11], is “the
expected number of offspring (for each newborn) over the course of its
entire lifetime”. From a mathematical point of view, ν is the spectral
radius of the so-called next generation matrix and, biologically [9] re-
presents the distribution with respect to state-at-birth of all newborn
descendants accumulated during the entire lifespan of an age structured
population

⎯→⎯
N0 . If ν>1 the population will survive while if ν is less than

1 the population may go extinct.
For the shake of completeness we have sketched in Appendix A.2

(see also [9,11]) the calculations leading to the (global) inherent net
reproductive number

= →
−

ν ϕ σ
σ

: ( 0 )
1

J

A (7)

that extends the (local) inherent net reproductive number

=
−

ν ϕ
σ

σ
(0)

1i i
J
i

A
i (8)

at patch = …i N1, , by combining the local fertility and survival rates
weighted by the asymptotic distribution of individuals of each age class.

The parameter ν is not explicit in system (4) but it is easy to make it
appear (see Appendix A.2). The following result, a rephrasing [11,
Theorem 1.7] characterizes the stability of the zero solution

Theorem 3.2. Consider system (4) and its inherent net reproductive
number ν given by (7). Then,

1. The zero solution
→0 is locally asymptotically stable if <ν 1.

2. The zero solution
→0 is unstable if >ν 1.

Proof. It is straightforward to check that system (4) fulfills the
hypotheses that lead to [11, Theorem 1.7]. □

It is of interest to understand whether the fact of connecting patches
changes the dynamics of the (local) populations. We will use either
“local” or “global” whenever we refer to unconnected or connected
patches, respectively.

Theorem 3.3. Consider system (4). Then,

1. The zero solution 
→ ∈0 2 is globally asymptotically stable if

→ → ∈
−

<
ϕ n n σ

σ
max { ( ), }max { }

1 max { }
1i i i i

J

i i
A

2

(9)

2. The zero solution 
→ ∈0 2 is unstable if

→

−
>

ϕ σ
σ

min { ( 0 )}min { }
1 min { }

1i i i i
J

i i
A (10)

Proof. First, note that

⎜ ⎟
⎛

⎝
⎜

→ ⎞

⎠
⎟ ≤ ⎛

⎝

→ ⎞
⎠

≤
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

ϕ n
σ σ

ϕ n
σ σ

ϕ

σ σ

0 ( )
min{ } min{ }

0 ( )
0 max{ }

max{ } max{ }
i

i
J

i
i
A

J A

i i

i
i
J

i
i
A

where the inequalities are entry-wise. Regarding 1, any solution of
system (4) is bounded from above by the solution of the discrete system
driven by most right hand side transition matrix in the above
inequality. From [19, Theorem 5.612], condition (9) leads the
bounding solution to

→( 0 ). On the other hand, 2 follows from [11,
Theorem 1.7]. □

Thus, roughly speaking, if ϕi≈ ϕj, ≈σ σi
J

j
J and ≈σ σi

A
j
A for all i≠ j,

= …i j N, 1, , , the differences between the local and the global behavior
are expected to be tiny. However, connecting heterogeneous patches
may lead to surprising outcomes.

3.1.1. Linking source–source, sink–sink or source–sink patches
We distinguish two kind of patches: sources and sinks. A source is

that patch where a population is viable (the zero solution is unstable)
and a sink patch is the contrary (and the zero solution is globally
asymptotically stable). It is accepted that dispersal cannot affect the
survival (resp. extinction) of a metapopulation consisting of source-
source (resp. sink-sink) patches [15,18]. The aforementioned results do
not account for age structure and our results are consistent with this
claim when either condition (9) or (10) hold, but we have also found
that it is not necessarily true when these conditions fail. This (appar-
ently) counterintuitive result is directly related to the age structure of
the population and the fact that age classes distribution can be het-
erogeneous. To our knowledge, the following results are completely
new. We consider just a two patches environment since this settings are
sufficient to show our results.

Source–source. The next result displays sufficient conditions under
which connecting two viable populations leads to extinction the local
populations, i.e, to connect two source patches leads the resulting
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metapopulation to extinction. This result can be easily generalized to N
patches.

The idea is as follows: assume that in one patch adult survival is low
but compensated by a high juvenile survival and, conversely, in the
other patch juvenile survival is low but compensated by a high adult
survival. The tradeoff mechanism can be broken by an inappropriate
age classes dispersal and a plausible scenario is the following: in fish
populations consider close to versus away from a reef in the presence of
a predator. When away from the reef, weaker individuals (juveniles) are
more vulnerable to predators (lower survival rate) while close to the
reef region, smaller individuals find more places where to hide (re-
fuges) so that juvenile are more likely to survive than adults. As a
consequence, the distribution of age classes is likely to be hetero-
geneous. The conditions on the parameters of the model in the fol-
lowing theorem should be understood as one (of many) ways to con-
crete these ideas.

Theorem 3.4. Consider system (4) such that
→ >ϕ ( 0 ) 1i . Let us assume that

= − = − = − = −σ σ σ σ σ σ μ μ1 , 1 , 1 , 1J A A A J J J A
1 1 2 1 2 1 1 1

(11)

with ≈σ μ, / 1/2i
θ

i
θ (note that νi>1 for =i 1, 2). Then, <ν 1 if, and only

if,

→

+ → < − + −
ϕ

ϕ
μ σ σ μ

( 0 )

1 ( 0 )
(1 ) (1 ).A

A A
A1 1

(12)

Proof. Condition (12) follows by direct calculations from the definition
of ν in (7) and the asymmetry conditions (11). □

Note that because of the continuity of ν respect to the parameters
defining it, Theorem 3.4 holds for small perturbations in conditions
(11) (i.e., by replacing the equals sign “=” by “approximately the
same” (≈ )).

Theorem 3.4 says that the local populations would survive if un-
connected (since νi>1) but the resulting connected metapopulation
would globally collapse because of the heterogeneous age classes spa-
tial distribution. Note that otherwise, i.e., if μi

J is sufficiently similar to
μ ,i

A the population would globally survive. Fig. 2 displays the inherent
net reproductive numbers: the local ones (see (8), discontinuous gray
lines for isolated patches, note that νi>1) and the global one (solid
black line, ν , see (7)) as function of the dispersal parameter μ J

1 . On the
left panel, the age classes structure is homogeneous ( =μ μi

A
i
J ). On the

right panel, the age classes structure is allowed to be unbalanced : >ν 1
for ≈ν 0J

1 while <ν 1 for ≈ν 1,J
1 where = −μ μ1A J

1 1 .

Sink–sink. In a symmetric manner to the source-source case described
in above, the model allows parameter values such that a
metapopulation consisting of two sink patches can survive in the long
term, even though the isolated population would disappear at each
patch if isolated. For the sake of brevity, we omit the equivalent of
Theorem 2 that can be easily written by the interest reader. We include
instead a numerical simulation in Fig. 3.

Source–sink. It is known that when the spatial model consists of source-
sink patches, there exist specific dispersal rates may lead to either
global population survival or global collapse [15] (and references
therein). Our results are consistent with those although, in addition,
we have found that the shape of the age-structure density-dependent
fertility functions together with dispersal may lead to either linear or
non-linear transitions between dispersal-induced survival/collapse
outcomes. See Section 4 for further comments.

3.2. Stability of the positive equilibrium states

Up to now we have characterized the stability of the zero solution
→0

by means of the values of the inherent net reproductive number ν . The
set of pairs 

→ ∈ν ν{( , 0 ); } is a curve of the extinction solutions of
system (4) in  ,3 the so-called trivial branch. From a dynamical point of
view such a extinction solution is locally stable for <ν 1 and unstable
for >ν 1. In the later case, if the population does not go extinct, where
does it go? We already know that population remains bounded, and the
question is whether there are other (positive) equlibrium points that
attract the solution of system (4) as ν crosses the threshold value =ν 1.
Furthermore, is extinction the only possible outcome for ∼ν 1, <ν 1,
or is there strong Allee effects?

We face this question by seeking for the existence of another curve
→ ∼ν n ν{( , *); 1} of no negative solutions of system (4) that meets (bi-

furcates) the trivial branch at
→(1, 0 ). We apply bifurcation techniques to

the aggregated system (4) to answer this questions and Theorem (2.1)
to translate this analysis to the complete system (1). The net inherent
reproductive number is usually used as bifurcation parameter. Let us
introduce few simple concepts on bifurcation.

We denote ⊂ +Σ 3 the set of pairs →ν n( , *) where →n * is an equili-
brium point to system (4). We call continuum any closed connected set.
We denote

= → ∈ ⊂ν ν{( , 0 ); } Σ0C

the above mentioned trivial branch. The following result establishes
conditions for the existence of a continuum bifurcating from 0C at =ν 1

Fig. 2. Inherent net reproductive numbers as function of μJ∈ [0, 1], the local ones in gray (see expression (8), dashed line for patch 1 and dotted line for patch 2,
νi>1) and the global one (see expression (7)) in solid black line. On the left, the age classes dispersal is homogeneous ( =μ μA J

1 1 ) and ν remains above the threshold
value 1. On the right, the age classes dispersal is heterogeneous: >ν 1 for ≈ν 0J

1 while <ν 1 for ≈ν 1,J
1 where = −μ μ1A J

1 1 . Parameter values: =σ .2,J
1 =σ .75,A

1
→ =ϕ ( 0 ) 2.25,1 =σ .75,J

2 =σ .2A
2 and

→ =ϕ ( 0 ) 1.752 .
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to positive equilibrium, that is, a pair →ν n( , *) with → > →n * ( 0 ) and ∼ν 1.

Theorem 3.5. Consider system (4) and assume that the fertility functions
are such that  ∈ + +ϕ C ( , )i

1 2 . Then, there exists a continuum +C in Σ such
that

• → ∈ +(1, 0 ) C .

• → ∈ ∖ →
+ν n( , ) (1, 0 )C and >ν 1, and the components of →n are positive.

• ∖ →
+ (1, 0 )C is unbounded in ∞ × +(1, ) 2 .

Proof. See Appendix A.2. □

Once established the existence of positive equilibrium states, the
focus is on their stability, since the bifurcation from the trivial branch

0C can be to either stable or unstable positive equilibrium points (the
later case is related to the Allee effect [11]). Which alternative occurs
depends on the sign of the (global) direction of bifurcation κ , [11] defined
by

= − ⎛

⎝
⎜

→ ∂ →

∂
+

∂ →

∂
⎞

⎠
⎟κ σ ϕ

ϕ
J

ϕ
A

( 0 )
( 0 ) ( 0 )

,J
(13)

derived in Appendix A.2. Note that the sign of κ depends on the deri-
vatives with respect to J and A of the (local) fertility functions. Both the
global inherent net reproductive number and the global direction of
bifurcation are built upon the local parameters of the model but de-
termine its global behavior. Their meaning is the same as the inherent
net reproductive number and the direction of bifurcation, but are
meaningful at different scales (global versus local).

We first assume that both fertility functions belong to the same class
C1 or C2 at both patches. In short, our result say that the global be-
havior reproduces the local behavior if patches were isolated.

On the one hand, for those populations with C1 fertility function,
there are no component Allee effects and the bifurcation in Theorem 3.5
is supercritical. That means that the positive equilibrium states are lo-
cally asymptotically stable and the zero equilibrium is unstable, at least
in a neighborhood + δ(1, 1 ) of the bifurcation threshold =ν 1 value,
for certain δ>0.

Theorem 3.6. Consider system (4) and assume that fertility functions
 ∈ + +ϕ C ( , )i

1 2 belong to class C1 for = …i N1, , . Then, the bifurcation
branch +C in Theorem 3.5 is supercritical.

Proof. It follows from [11, Theorem 2.3] by explicitly calculating the
bifurcation direction κ (see Appendix A.2). Direct calculations lead to

>κ 0 since ϕi is strictly decreasing in both J and A, which means that It
follows from [11, Theorem 2.3] by explicitly calculating the bifurcation
direction κ (see Appendix A.2). Direct calculations lead to >κ 0 since ϕi

is strictly decreasing in both J and A, which means that the bifurcation
is supercritical. □

On the other hand, for those populations with C2 fertility function
there are component Allee effects and the bifurcation in Theorem 3.5 is
subcritical (see the discussion Section 4). That means that the positive
equilibrium states are locally asymptotically unstable at least in a
neighborhood − δ(1 , 1) of the bifurcation threshold =ν 1 value, for
certain δ>0.

Theorem 3.7. Consider system (4) and assume that the fertility functions
 ∈ + +ϕ C ( , )i

1 2 belong to class C2 for = …i N1, , . Then, the bifurcation
branch +C in Theorem 3.5 is subcritical.

Proof. See the proof of Theorems 3.6. In this case, the hypothesis imply
that the bifurcation direction κ given by (13) is negative, which implies
that the bifurcation is subcritical. □

Fig. 4 displays simulations in two patches environment that illus-
trate the above results: the typical supercritical (left, both fertility
functions belong to class C1) and subcritical (right, both fertility
functions belong to class C2) bifurcation diagrams. Note that in the
right panel, for ≈ν (0.2, 2) there exists other equilibrium attractor than
the zero solution; and what is the outcome of the model depends on the
initial values, what is called strong Allee effect,Cushing14. Further details
on the precise expression of the functions involved in the construction
of the bifurcation diagram, the values of the parameters and suitable
code (written in R) to reproduce the diagrams can be found in the re-
producible code document [16].

The following result deals with all the other situations, i.e., when
either both fertility functions belong to class C3 or each fertility func-
tion belongs to a different class (C1, C2, C3). That is, there are com-
ponent Allee effects only in some patches. It is shown that in such a case
there exist always dispersal schemes yielding either <κ 0 or >κ 0,
what means the weight of the component Allee effects at the metapo-
pulation level depend on the asymptotic distribution of individuals
among patches.

Theorem 3.8. Consider system (4) and assume either

• That both fertility functions ϕi belong to class C3.

• Or that each fertility function belongs to a different class (C1, C2, and
C3).

Then, there are dispersal schemes leading to either a subcritical or a
supercritical bifurcation to positive solutions.

Proof. See Appendix A.2. □

Fig. 3. Local inherent net reproductive numbers (see expression (8), in gray, dashed line for patch 1 and dotted line for patch 2, νi<1) and the global inherent net
reproductive number ν (see expression (7), solid black line) as function of μJ∈ [0, 1]. On the left panel age classes dispersal is homogeneous ( =μ μA J ) and ν remains
below the threshold value 1. On the right panel age classes dispersal is heterogeneous: <ν 1 for ≈ν 0J

1 while >ν 1 for ≈ν 1,J
1 = −μ μ1A J

1 1 . Parameter values:

=σ .5,J
1 =σ .2,A

1
→ =ϕ ( 0 ) 1.3,1 =σ .2,J

2 =σ .7A
2 and

→ =ϕ ( 0 ) 1.42 .

M. Marvá, F. San Segundo Mathematical Biosciences 300 (2018) 157–167

162



4. Conclusions

This work was aimed to analyze the interplay between dispersal
strategies and density-dependent fertility in a metapopulation struc-
tured by age. We have included the age structure in both dispersal and
fertility processes under the assumption that individuals dispersal and
demography are processes that evolve according to different time
scales.

4.1. Connecting sources and/or sinks

From the environmental management perspective, it is fundamental
not only considering the properties of the patch to patch connections
and those of the connected patches [2], but also the dispersal tenden-
cies of individuals of different age classes [1]. Our results complement
those found in [15,18].

A comment on source and sink patches. Regarding sink regions, some
authors [3] suggest that an inaccurate evaluation of the habitat quality
may lead species to settle on a sink region and, indeed it was shown
later [33] that it is not always easy to decide whether a given habitat is
a good one to settle. Our results reinforce these assertions, since we
have seen that connecting two source (sink) patches may lead the
resulting metapopulation to extinction (survive).

Disperal-induced global source-sink behavior. When the spatial model
consists of source–sink patches, there exist dispersal schemes that may
lead to either global population survival or global collapse [15] (and
references therein). Indeed, there exists a threshold for dispersal rates
leading the source-sink system to either survive or go extinct. Once this
threshold is established, from a management point of view, it is of
interest to know the sensitivity of the outcome to variations on the

dispersal rates.
From expression (7) defining ν it can be seen that when survival

rates are spatially homogeneous (i.e., ≈σ σi
J

j
J and ≈σ σi

A
j
A for all i≠ j)

the transition from behaving as a global sink to a global source as the
asymptotic distribution of individuals changes from the local sink to the
local source is (almost) linear. Otherwise, in the heterogeneous case,
nonlinear transitions can be observed. Thus, slight variations in dis-
persal rates may lead to abrupt variations in the global inherent net
reproduction number, making the global population either survive or
collapse. We illustrate these facts in Fig. 5 in a two patches environ-
ment.

4.2. On the Allee effect: local density-dependent fertility functions and
dispersal

The Allee effect is recognized to have great importance in ecology
[10,12] and many efforts have been dedicated to analyze the interplay
between the Allee effect and dispersal (see [14] and references therein).
A negative sign in the direction of bifurcation κ [11,12] entails for Allee
effect and, in our framework, it has to do with the existence of strong
enough component Allee effects in local fertility functions.

From a management point of view, the intervention strategies aimed
to avoid the Allee effect spin around the idea of keeping the population
away from the Allee threshold, what can be done by connecting this
patch to a source patch that supplies individuals.

Theorem 3.6 tell us that whenever ϕi are of class C1, = …i N1, , ,
there are no component Allee effects while, if ϕi are of class C2,

= …i N1, , , from Theorem 3.7 the possibility of an Allee effect episode
is intrinsic to the population. In Theorem 3.8 we found that when the
fertility functions are of different type at each patch (or all of them of
type C3) the sign of κ can be either positive or negative and it depends
on the dispersal rates, that define the strength of the component Allee
effects at the metapopulation level. Thus, there is room to avoid further

Fig. 4. Bifurcation diagram, total population size versus ν . Local fertility functions of class C1 (left, supercritical, = − −ϕ J A ψ a J a A( , ) ·exp( )),i i i i J
i

i A
i

1 =i 1, 2) and C2
(right, subcritical, = + − −ϕ J A ψ J A a J a A( , ) ·(1 )exp( )),i i i i i i J

i
i A

i
i =i 1, 2). Besides, for both functions, = =a a 0.1,J A

1 1 = =a a 0.2,J A
2 2 =σ 0.2,J1 =σ 0.75,J2 =σ 0.85,A1

=σ 0.3,A2 =p 0.4,J
1 =p 0.4,J

2 =p 0.4,A
1 =p 0.4,A

2 ψ1 ranges from 0 to 30 by an steep equal to 0.1 and ψ2 ranges from 0 to 15 by an steep equal to 0.05. For the
construction of the bifurcation diagrams, for each value of the bifurcation parameter ν we have set up initial values, run 1000 iterates of the aggregated model,
discarded the first 800 and plot the last 200. This procedure captures just attractor sets. In the right panel, the bifurcation at =ν 1 is to unstable equilibrium points
(not solid points). At a given point there is a blue sky type bifurcation and the backwards unstable branch turns to the right and becomes stable. We have not
calculated the branch of unstable equilibrium points, since its precise shape is not relevant to our problem and we have just plotted a polynomial curve joining both
the trivial branch 0C and the nontrivial branch of stable equilibrium points. In both panels, there are a subsequent period doubling bifurcation(s). Full information
and code is available in the reproducible document [16].
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Allee effects as far as managers keep control on dispersal.
Interestingly, the existence of a patch without component Allee ef-

fects (in the fertility function) is a necessary but not a sufficient con-
dition (actuation): it is just the basis that makes it possible to avoid
Allee episodes via the control of local vital rates (see comments below
on Fig. 6). These last comments apply also to the implementation of
terrestrial refuges [31], marine protected areas or artificial habitats
(e.g. reefs) that are also broadly used for population management
purposes, in order to create source patches that help to maintain en-
dangered populations as well as to enhance exploited populations
[6,40] (obviously, those are not a universal solution [23]).

The previous statements are general ones and do not depend on the
age structure of the population. Nevertheless, as illustrated in Fig. 6,
when the population is age structured the sign of κ is sensitive to
homogeneous/heterogeneous age classes distribution (in a two patches
environment). In Fig. 6 we assume that ϕ1 is of class C1 and ϕ2 of class
C2 and we represent the bifurcation direction κ as function of dispersal
rates and and intrinsic local fertility rates. In the left panel of Fig. 6 we
suppose that juvenile and adult individuals are homogeneously mixed
( =μ μJ A

1 1 ) while in the right panel juvenile and adult individuals
mainly disperse asymmetrically ( = −μ μ1 ,A J

1 1 ≈μ μ/A J
1 1 ) For the

chosen parameter values and for any fixed value of α (the difference
between local intrinsic fertility rates) there are values of the dispersal
rates yielding bifurcation to either unstable ( <κ 0) or stable ( >κ 0)
equilibrium states.

4.3. Further effects on the population size and (de)stabilization phenomena

A recent work [15] deals with the effects on the population fitness

of connecting two patches. The authors considered symmetrical dis-
persal (meaning that the fraction if individuals leaving each patch is the
same) in a population without age classes structure and found that
connecting source-source patches may increase the global population
size; furthermore, in particular, the curve displaying population size
versus dispersal rate was unimodal.

Our results are complementary to those in [15]. On the one hand,
when age classes dispersal is homogeneous all the numerical experi-
ments performed show that the aforementioned curve is unimodal. We
could not provide an analytical (mathematical) proof since the equa-
tions become too complicated due to consider age structure. On the
other hand, the curve is not necessarily unimodal when age classes
distribution is heterogeneous (right panel in Fig. 7).

Fig. 7 consists of two bifurcation diagram displaying the total po-
pulation size versus the asymptotic distribution of individuals between
two connected patches (black solid line) along with its distribution
among patch 1 (black dotted line) and patch 2 (black dashed line). On
the left panel =μ μA J (homogeneous dispersion) and on the right panel

= −μ μ1 ,A J (focus on the region where i.e heterogeneous age classes
dispersal). The lines in gray represent the population size at patch 1
(dashed), at patch 2 (dotted) and the total population size (dotted–-
dashed) when patches are isolated. Note that on the left panel the total
population size equals the local population size at patch 2 at

= =μ μ 0J A (all the individuals are in patch 2) and equals the local
population size at patch 1 at = =μ μ 1J A (all the individuals are in
patch 1).

Away from the bifurcation to positive equilibrium points at =ν 1,
further bifurcations are possible, as doubling period and routes to
chaos. Many previous works have addressed the effects of dispersal on

Fig. 5. Global inherent net reproductive number (see (7)) as function of juvenile and adult asymptotic spatial distribution in a two patches environment. Left panel
=σ 0.52,J

1 =σ 0.48,J
2 =σ 0.38,A

1 =σ 0.41,A
2

→ =ϕ ( 0 ) 0.6,1
→ =ϕ ( 0 ) 2.22 . Right panel =σ 0.3,J

1 =σ 0.8,J
2 =σ 0.2,A

1 =σ 0.7,A
2

→ =ϕ ( 0 ) 0.6,1
→ =ϕ ( 0 ) 2.22 .

Fig. 6. The bifurcation direction κ (see (13)) depends on dispersal rates and intrinsic fertility rates. Local fertility functions are of class C1 and C2 (further details can
be found in the reproducible code document [16]). Parameter values

→ =ϕ ( 0 ) 2,1
→ = → +ϕ ϕ α( 0 ) ( 0 ) ,2 1 ∈ −α [ 1, 1], =σ 0.75J

1 =σ 0.75J
2 . On the left panel, dispersal is

homogeneous between age classes for ∈μ [0, 1],J
1 =μ μA J

1 1 . On the right, age classes distribution is allowed to be heterogeneous ∈μ [0, 1],J
1 = −μ μ1 ,A J

1 1 μ A
1 ≉μ J

1 .
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stabilization/destabilization of a population model (see [13] and re-
ferences therein). Including age structure in the populations model and
considering homogeneous/heterogeneous age classes distribution
should lead to a wider range of outcomes. An exhaustive study of
possible outcomes is beyond the scope of this work and we think that it
deserves attention in future works. For instance, the following Fig. 8
displays the local population size at each patch when patches are iso-
lated, that are attracted by a 2-cycle, respectively (see the leftmost/
rightmost hand sides of the curve in the left panel). When patches are
connected and age classes distribution is homogeneous (left panel), the
global population dynamics displays still a 2-periodic behavior when

= ∈ ∪ ∪ −μ μ δ δ[0, ) (0.2, 0.8) (1 , 1]A J (approx). Nevertheless, there
are two ranges of asymptotic individuals distribution that globally
stabilize the total population size when = ∈μ μ (0.2, 0.8)A J (approx).

On the contrary, when age classes distribution is allowed to be
heterogeneous (right panel), the global population dynamics does not

display a 2-periodic behavior for strong enough asymmetrical dis-
tribution ( = −μ μ1A J and μJ∈ [0, 0.38] ∪ [0.78, 1], approx) but the
global behavior is 2-periodic when μJ∈ (0.38, 0.78) (approx). Let us
recall that it follows from Theorem 2.1 that global periodic behavior
implies local periodic behavior.

Up to date, approximate aggregation techniques do not allow to
translate information about general compact attractors different from
hyperbolic equilibrium points or periodic solutions from the aggregated
system to the general one. Preliminary numerical simulations have re-
vealed a wide range of behaviors challenging our intuition, and we
hope that his findings encourage further development of approximate
aggregation techniques allowing to complete such an analysis.

4.3.1. Highlights
We conclude by highlighting the key ideas and conclusions

Fig. 7. The black line represents a bifurcation diagram displaying the total population size versus the asymptotic spatial distribution of individuals between two connected
patches: on the left =μ μA J (homogeneous dispersal) and on the right = −μ μ1 ,A J μA≉μJ (heterogeneous dispersal). The lines in gray represent the population size at patch 1
(dashed), at patch 2 (dotted) and the total population size (dotted-dashed) when patches are isolated. Fertility functions belong to class C1, namely,

= − −ϕ J A ψ a J a A( , ) exp( )i i i i J
i

i A
i

i with = =a a 0.1,J A
1 1 = =a a 0.2J A

2 2 and ψ1 ranging from 0 to 30 by an steep equal to 0.1 and ψ2 ranging from 0 to 15 by an steep equal to

0.05. Besides, =σ 0.4,J
1 =σ 0.6,J

2 =σ 0.4,A
1 =σ 0.3,A

2
→ =ϕ ( 0 ) 51 and

→ =ϕ ( 0 ) 5.52 . The diagram is built as in Fig. 4. The code to compute the diagram can be found in [16].

Fig. 8. The black line represents a bifurcation diagram displaying the total population size versus the asymptotic distribution of individuals between connected
patches: on the left =μ μA J and on the right = −μ μ1A J μ

A
≉μ

J
(heterogeneous age classes distribution). Fertility functions belong to class C1, namely

= − −ϕ J A ψ a J a A( , ) exp( )i i i i J
i

i A
i

i with = =a a 0.1,J A
1 1 = =a a 0.2J A

2 2 and ψ
1 ranging from 0 to 30 by an steep equal to 0.1 and ψ2 ranging from 0 to 15 by an steep equal to

0.05. The other parameter values are =σ 0.2,J1 =σ 0.6,J2 =σ 0.85,A1 =σ 0.3A2 The code to compute the diagram can be found in [16].
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• Our results are coherent with those in the existing literature when
there is spatial homogeneity and homogeneous age classes dispersal,
although otherwise the model allows unexpected outcomes.

• The long term behavior of the population is sensitive to both the
dispersal rates of individuals belonging to different age classes and
the shape of the fertility function.

• Managers may expect to keep some control on the population dy-
namics through the global direction of bifurcation κ and the global
inherent net reproductive number ν insofar as they (managers) can
modify dispersal or local vital rates.

• At the landscape scale, alterations that modify species dispersal
strategies may drastically change the long term behavior of the
whole metapopulation.

• At the local (patch) scale, alterations of the habitat may have re-
percussion at the global scale via individuals dispersal.

• Implementing refuges or artificial habitats may not be enough to
preclude Allee effect episodes in the metapopulation, meaning that
even the subpopulation inhabiting the refuge would be exposed to
the Allee efect given appropriate dispersal rates.
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Appendix A

A1. Reduction dimension procedure

In this section, we describe in a more detailed way the approximate aggregation procedure applied to system (1) in order to derive the aggregated
system (4). The starting point is the two time scales system (1)

=+X X X( )n
k

n
k

n1 S F F

where k stands for the kth power of F . Matrix F is block-diagonal, and each block ,θF =θ J A, , is a regular stochastic matrix. Thus, the Per-
ron–Frobenious Theorem [35] guarantees that the following limit exists

=
→∞

X Xlim .
k

kF F (14)

Note that the only N×N stochastic matrix that is not regular is the matrix with all its entries equal to 1/N. Such a matrix is nilpotent, so that limit
(14) trivially holds. Indeed, matrix F is also a block diagonal matrix = diag( , )J AF F F such that

= ⋯ =μ μ θ J A( ), , ,θ θ θF

where = …μ μ μ( , , )θ
θ

N
θ

1 is the Perron eigenvector, i.e, μi
θ stands for the asymptotic fraction of individuals of age class =θ J A, at patch = …i N1, , . We

use limit (14) to build the so called auxiliary system (3)
⎯→⎯

+ =
⎯→⎯ ⎯→⎯

N t N t N t( 1) ( ( )) ( )S F F

that approximates the two time scales system (1). In order to perform the dimension reduction, note that

=
⎛

⎝
⎜

→

→
⎞

⎠
⎟

⎛

⎝
⎜

→ →

→ →
⎞

⎠
⎟ =

μ

μ

0

0
1 0

0 1
: ,J

A

T T

T TF EG

(15)

where the column vectors
→ = … → = …1 (1, ,1) , 0 (0, ,0)T T belong to N . Note also that the total amount of juveniles or adults remains constant within

each reproductive period, that is, it is invariant by the fast dynamics (dispersal). We define the so called global variables

⎜ ⎟
⎯→⎯

= ⎛
⎝

⎞
⎠

N J
AG

(we denote → =n J A( , )T) and pre-multiplying system (3) by theG yields the aggregated system associated to system (1)
→ + = → → = → →n t n t n t n t n t( 1) ( ( ( )) ( ( ) : ( ( )) ( ).GS E E L (16)

Once the reduced system is derived, Theorem 2.1 describes the features of the complete system inherited by the reduced system. Theorem 2.1
holds if limits (14) and

⎯→⎯
=

⎯→⎯
→∞D N D Nlim ,k

kF F where D stands for the differential of ,F are uniform on compact sets of  ,N2 which holds
straightforward since F is linear (for further details, see [34]).

A2. Derivation of the inherent net reproductive number, the direction of bifurcation, and several proofs

In this section we reproduce known results that can be found in [9,11] to derive the net reproductive number ν given by expression (7) and to
write the reduced system (4) in a suitable way to perform the bifurcation analysis.

The Leslie matrix (4) is density-dependent, and we write it as
⎯→⎯

= +
⎯→⎯

N J A N( ) ( ( , ) )L H T

where

⎜ ⎟ ⎜ ⎟=⎛
⎝

⎞
⎠

=⎛
⎝

⎞
⎠σ σ J A ϕ J A: 0 0 ( , ): 0 ( , )

0 0J A
T H

(17)

and J A( , )H is rescaled so that =J A ν J A( , ) Φ( , )H and
→ − =−ρ I(Φ( 0 )( ) ) 11T . The parameter ν is the inherent net reproductive number, and is

given by
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= → − −ν ρ I( ( 0 )( ) ).1H T

Thus, the map defining the dynamics of the aggregated system (4) becomes

⎯→⎯
= +

⎯→⎯
N ν J A N( ) ( Φ( , ) )L T

which depends on the bifurcation parameter ν .
For the sake of self-completeness, we recall that the direction of bifurcation is defined [11] as: = −⎯→⎯ →κ w D v , where ⎯→⎯w and →v stand, respectively,

for the left and right eigenvectors of matrix
→ + →Φ( 0 ) ( 0 )T associated with the eigenvalue 1. The entry dij of matrix D is defined by = →d γ v: ,ij ij

T where
=∇ +

=
γ ϕ x τ x: ( ( ) ( ))ij x ij ij ν x( , ) (1,0)

and ϕij, τij are the entries of matrices Φ and T, respectively. Direct calculations lead to

= − ⎛

⎝
⎜

→ ∂ →

∂
+

∂ →

∂
⎞

⎠
⎟κ σ ϕ

ϕ
J

ϕ
A

( 0 )
( 0 ) ( 0 )

J

Proof of Theorem 3.5. The proof follows from [11, Theorem 2.1], so that we show that the hypotheses required there are met by system (4).
Namely, the entries of matrices H and T defined in (17) are of class C1 since the entries of matrix s are so (see Section 2). Besides, matrix

→ + →ν n n( Φ( ) ( ))T is primitive for any non-negative → ≥n 0 and ν>0, → ≠n( ) 0,T → <ρ n( ( )) 1,T and ⎜ ⎟
⎛
⎝

→ − → ⎞
⎠

=
−

ρ Φ( 0 )(1 ( 0 )) 1
1

T . □

Proof of Theorem 3.8. By assumption, there exists at least one patch with component Allee effect and at least on with none. Therefore, it follows
from the definition (13) of κ that the result holds if we find a dispersal schema (i.e., a regular stochastic matrix) such that its Perron eigenvector
gathers a majority of individuals in the above mentioned patch.

Given = … >μ μ μ( , , ) 0N1 such that ∑ =μ 1,i let us choose a∈ (0, 1) such that aμN/μi<1 for = … −i N1, , 1. Then, the above referred matrix is
the matrix R such that its diagonal elements = −r aμ μ1 / ,ii N i and the sub-diagonal =+r aμ μ/i i N i1, for = … −i N1, , 1. Besides, =r aN1, and all the
other entries equal to zero. □
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