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ABSTRACT
In Nature, species coexistence is much more frequent than what
the classical competition model predicts, so that scientists look for
mechanisms that explain such a coexistence. We revisit the classical
competition model assuming that individuals invest time in com-
peting individuals of the other species. This assumption extends the
classical competition model (that becomes a particular case of the
model presented) under the formof aHolling type II term, thatwecall
competitive response to interfering time. The resultingmodel expands
the outcomes allowed by the classical model by (i) enlarging the
range of parameter values that allow coexistence scenarios and (ii)
displaying dynamical scenarios not allowed by the classical model:
namely, bi-stable conditional coexistence in favour of i (either species
coexist or species i wins) or tri-stable conditional coexistence (either
species coexist or any of them goes extinct), being exclusion in both
cases due to priority effects.
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1. Introduction

The structure of ecosystems is determined by the interaction between biotic and abiotic ele-
ments. Species competition is among the most important biotic factors; individuals com-
pete almost everywhere with individuals of the same species (intra-species competition)
and/or individuals of a different species (inter-species competition).

The early theory of competition spinned around theworks of Lotka, Volterra andGause.
Namely, Lotka and Volterra [23,35] found that coexistence is possible when intra-species
competition is stronger than inter-species competition. The Competitive exclusion princi-
ple set by Gause [13] stated that two species occupying the same niche cannot coexist [15].
This theoretical framework is at odds with reality, given that species coexist much more
often than expected within this framework [30,33,36].

Different explanations andmechanismhave been proposed to explainwhy species coex-
istence is more prevalent than species exclusion. From the above referred framework, that
means to describemechanisms reducing inter-species competition (see [38] and references
quoted there). For instance, in [2] extensions of the competitive exclusion principle were
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proposed. The classical niche theory [21,24] assumes that differences among two species
in the use of available resource types entail a reduction in the per capita competitive effects
of the two species on each other. Species dispersal strategies and habitat heterogeneity
[3,25,29], the resolution at which resources are perceived by each competing species [33],
the so-called equalizing and stabilizing mechanisms (a trend to minimize in average dif-
ferences in species fitness or to increase negative intra-specifies interactions relative to
negative inter-species interactions, respectively) [10], host-specific pets-based mechanism
[8,16,37] or age-structure and distance between colonies [6].

The above-mentioned mechanisms focus on species strategies or environmental con-
strains. An alternative approach consists on focusing on the actual way competition takes
place. Despite of its importance, the classical Lotka–Volterra model was somehow over-
simplifying. This model assumes that species are perfectly mixed and that the effect of
one species on the other is linear to the population size of its competitor [30,38]. How-
ever, [5,34] empirically shown that competitive effects can be density-dependent which
entails that the nullclines, the zero growth curves of the corresponding differential or dif-
ference equations system, are non-linear in contrast to the linear nullclines of the classical
Lotka–Volterra competitionmodel. Subsequently,Nunney [30] argued that it ismore inter-
esting to focus on the nullclines curvature rather than on getting accurate estimates of
the classical competition parameters model. He proposed a general model formulation in
terms of the so-called resource availability functions and proved that the curvature of such
a functions determine the curvature of the model nullclines. In contrast to predator–prey
models [7,11,12,17,32], most of the other variations of the classical model are phenomeno-
logical as in [5,34] (and references citing these papers), but also justifying the form of the
species interference term based on ‘food encounters’ [31] on available resources [14] or
on a cooperation–competition mechanism [38]. Also in [1,27] an elaborated social model
is proposed, in which the individuals of one population gather together in herds, while
the other one shows a more individualistic behaviour, so that interactions among the two
populations occur mainly through the perimeter of the herd.

The departure assumption in this work is that competing takes time rather than being
instantaneous. In other words, two individuals of different species that compete for a given
resource do need to invest certain amount of time to get this resource. Themodel presented
herein extends the classical interference competitionmodel [13] (see also [4]) that becomes
a particular case when competition is assumed to be instantaneous. The mechanism is
essentially that used in Holling works [17,18]. Indeed, the interference term of the model
takes the form of a Holling type II term [17] that we callHolling type II competitive response
to interference time.

As a result, we found a range of parameter values that leads to the same competition out-
comes as in the classical model. In addition, we have found also competition outcomes not
allowed by the classical model. In the so-called bi-stable conditional coexistence (in favour
of one of the species) either species coexist or one of them goes extinct, depending on the
initial number of individuals (i.e. due to priority effects). There is also the so-called tri-
stable conditional coexistence scenario that allows either species coexistence or any of them
to go extinct due to priority effects.

The manuscript is organized as follow: in Section 2, we derive the above-mentioned
model. We also analyze there those scenarios that are the same as in the classical model.
In Section 3, we gain an insight on the role of the competitive response by considering
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that only individuals of one species expend time in competition. In Section 4, we consider
the complete model with competitive response on both species. The system can be ana-
lytically analyzed under the assumptions of either symmetric (Section 4.1) or asymmetric
(Section 4.2) competition. These results are completed in Section 4.3 with numerical simu-
lations on the most general model. Finally, Section 5 is devoted to the discussion of results
and to drawn conclusions.

2. The Holling type II competitionmodel

The departure model is the classical Lotka–Volterra competition model

x′
1 =r1x1 − a11x21 − a12x1x2

x′
2 =r2x2 − a22x22 − a21x1x2

(1)

where xi and ri > 0 stand for the amount of individuals and the intrinsic growth rate of
species i = 1, 2, respectively. Coefficients aij > 0 account for intra (i = j) and inter (i �= j)
species competition, for i, j = 1, 2.

The key assumption of the classical model (1) is that the per capita growth rate of species
i decreases linearly with xi and xj (i �= j), i.e.

x′
i
xi

= ri − aiixi − aijxj, i �= j, i, j = 1, 2

In particular, it means that given a fixed number of individuals of species j, the competi-
tive pressure that species j �= i exerts over species i increases as the number of individuals
of species i increases. This assumption may not always make sense on interference com-
petition if competing takes time, since a fixed number of individuals of species j can not
interfere the same on species i when competing with, lets say, 10 or 1000 individuals of
species i.

We propose an alternative formulation that is an adaptation of [17,18] to the current
context. As in [17], we assume that the probability of a given individual of species i to
encounter an individual of species j �= i within a fixed time interval T (in a fixed region)
depends linearly on the number of individuals of species j. Then, the number Ni of com-
petitors of species i �= j that become extinct due to the interference of a single individual of
species j �= i is given by

Ni = aTactvxi
where xi is the total amount of individuals of species i, Tactv stands for the time that indi-
viduals are active (searching for/defending resources or territories, matching, . . . ), a is the
product of the resources finding rate times the probability of meeting a competitor; thus
a is a constant equivalent to Holling’s discovery rate. If interference does not take time,
T = Tactv; otherwise T > Tactv. Let Tint be the average time that interference takes, so that
Tactv = T − TintNi, that implies

Ni = aTactvxi = a(T − TintNi)xi

that is equivalent to

Ni = aTxi
1 + aTintxi

(2)
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that we callHolling type II competitive response to interference time. Plugging this expression
in system (1) and relabelling coefficients yields

x′
i
xi

= ri − aiixi −
aijxj

1 + aixi
, i �= j, i, j = 1, 2 (3)

Thus, the inter-species competition coefficient is constant only in case of instantaneous
interactions (i.e. ai = 0 due to Tint = 0). Otherwise, the impact of species j on species
i is density dependent, a decreasing function of xi for a fixed amount of individuals of
species j.

Note that in general a1 �= a2, since the searching rates, the probabilities of finding other
species’ competitors or the time spent competing/snatching resources can be different for
each species due to phenotypical and/or behavioural traits.

Also, in this workwe focus onmechanisms that facilitate species coexistence. Thus, even
if it could make sense, we do not consider the effect of the time elapsed when competing
with conspecifics. Doing so we stress the inter-species dynamics and avoid possible com-
pensatory effects (of the time invest in intra/inter-species competition) that are beyond the
scope of this work.

In the sequel, we analyze system (3) and compare the competition outcomes to those
yield by the classical competitionmodel (1). Let us first rewrite system (3) in a suitable way
by setting ui := aiixi/ri, cij := aij/(riaii) and ci := ai/aii, that yields

u′
1 =r1

(
u1 − u21 − c12u1u2

1 + c1u1

)

u′
2 =r2

(
u2 − u22 − c21u2u1

1 + c2u2

) (4)

Note that the competitive strength cij is the ration of the inter-species and intra-species
dynamics rates. Also, ci is the ratio of the capability of endure competitors (meaning that
the larger is ci, the more time needs a competitor to make species i surrender) and the
intra-species competition rates.

For the convenience of the reader, we recall the possible outcomes of the classical
competition model, that are summarized in Figure 1:

Theorem 2.1: Consider system (4) with c1 = c2 = 0. Then, for any solution with initial
values in the positive cone

(1) E∗
0 := (0, 0) is globally asymptotically stable if, and only if ri < 0, for i = 1, 2.

(2) E∗
1 := (1, 0) is globally asymptotically stable if 0 < c12 < 1 and c21 ≥ 1.

(3) E∗
2 := (0, 1) is globally asymptotically stable if 0 < c21 < 1 and c12 ≥ 1.

(4) The equilibrium point

E∗
3 =

(
1 − c12

1 − c12c21
,

1 − c21
1 − c12c21

)
is globally asymptotically stable if 0 < c12 < 1 and 0 < c21 < 1.

(5) E∗
3 is unstable if c12 > 1 and c21 > 1. In such a case, E∗

1 and E
∗
2 are asymptotically stable,

each of which has a basin of attraction defined by a separatrix passing through E∗
3 .
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Figure 1. Top panel: possible phase portraits of the classical competition system (system (4)) with c1 =
c2 = 0). Bottom panel: species competition outcomes as function of the competitive strength c12 and
c21.

Proof: See Section 3.5 in . �

Conditions in Theorem 2.1 state cij = 1, i �= j, as a threshold value to compare with the
competitive strength cij, i �= j. In short, species j can not drive species i to extinction if, and
only if, the competitive strength cij, i �= j, of species j on species i is less than 1 (see Figure 1
for a graphical summary).

We next show that system (4) is well behaved, in the sense of the following proposition:
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Theorem 2.2: Consider system (4). Then,

(1) The axes are forward invariant.
(2) The solutions are bounded from above.
(3) The positive cone R2+ = (0,+∞)× (0,+∞) is forward invariant.

Proof: Statement 1 follows from the fact that any solution with initial values on one
the (say) u1 axes, fulfills an uncoupled system that consists of the logistic equation u′

1 =
r1u1(1 − u1) and u′

2 = 0. Regarding 2, any solution of equation i is bounded from above
by the solutions of the logistic equation u′

i = riui(1 − ui), i = 1, 2. The third item is
consequence of 1 and 2. �

The following result establishes the existence and stability properties of the so-called
trivial and semi-trivial equilibrium points of system (4), that is the same as in the classical
model. From now on, we assume that ri > 0 for i = 1, 2.

Theorem 2.3: Consider system (4). Then,

(1) The trivial equilibrium point E∗
0 = (0, 0) is unstable (note that ri > 0).

(2) There exist semi-trivial equilibrium points E∗
1 = (1, 0) and E∗

2 = (0, 1). Besides:
(a) E∗

i is asymptotically stable if cji > 1, i �= j.
(b) E∗

i is unstable stable if cji < 1, i �= j.

Proof: The existence of E∗
i , i = 0, 1, 2, follows from direct calculations. The stability

conditions follow from an standard analysis of the eigenvalues of the Jacobian matrix. �

The next sections are devoted to understand the effect on the competition outcome of
considering a Holling type II competition term in just one species.

3. Holling type II response on just one species

In order to gain an insight on the role of the competitive response, we first assume that only
species 2 spends time when competing species 1. Thus, we analyze system

u′
1 =r1

(
u1 − u21 − c12u1u2

1 + c1u1

)

u′
2 =r2(u2 − u22 − c21u1u2)

(5)

System (5) is a particular case of system (4), so that we already know that it is well behaved.
Proposition 2.3 also holds in relation to the existence and local stability of the trivial and
semi-trivial equilibrium points.

In the sequel, we focus on the non-trivial equilibrium points. Note that the nullcline
u2 = f2(u1) that solves u′

2 = 0 is either u2 = 0 or an oblique straight line, as in the clas-
sical model. In contrast, the nullcline u2 = f1(u1) that solves u′

1 = 0 is either u1 = 0 or a
parabola. This feature is behind the differences between the outcomes of the classicalmodel
and system (5), see Figure 2 and note that panel (v) leads to a dynamical scenario that is
not covered by the classical system (see Figure 1).
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Figure 2. Possible phase portrait of system (5).

Indeed, Figure 2 suggest that most of the outcomes (4 over 5) of system (5) are qual-
itatively the same as in the classical model. The following result displays conditions that
describe those scenarios.

Theorem 3.1: Consider system (5). Then, for any solution with initial values in the positive
cone:

(1) E∗
1 is globally asymptotically stable if, and only if, c12 ≤ 1 and c21 ≥ 1.

(2) E∗
2 is globally asymptotically stable if, and only if,

(1 − c1 − c12c21)2 < 4c1(c12 − 1). (6)

(3) Assume now that c12 < 1 and c21 < 1. Then, there exists an equilibrium point

E∗
+ = (

u∗
1+, u

∗
2+
)

(7)

where

u∗
1+ = (c1 + c12c21 − 1)+

√
(c1 + c12c21 − 1)2 − 4c1(c12 − 1)

2c1
,

and

u∗
2+ = 1 − c21u∗

1+
that is globally asymptotically stable to the positive cone.
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Figure 3. Phase portrait related to tangent nullclines. Solid points denote the locally asymptotically
stable equilibrium points E∗

1 and E
∗
2 while the equilibrium E∗ is non-stable.

(4) Assume that c12 > 1 and c21 > 1. Then there exists an equilibrium point

E∗
− = (

u∗
1−, u

∗
2−
)

(8)

where

u∗
1− = (c1 + c12c21 − 1)−

√
(c1 + c12c21 − 1)2 − 4c1(c12 − 1)

2c1
,

and

u∗
2− = 1 − c21u∗

1−
that is unstable, while E∗

1 andE
∗
2 are stable, each of which has a basin of attraction defined

by a separatrix passing through E∗−.

Note that conditions in statements (1)–(4) avoid (i) the case of two interior equilibrium
points (see Figure 2(v)) and (ii) the case of tangent nullclines in the first quadrant (see
Figure 3).

Proof: Consider the nullclines associated to the flow of system (5) defined by

f1(u1) = (1 − u1)(1 + c1u1)/c12, f2(u1) = 1 − u1c21

that is, a parabola and a straight line (see Figure 2) so that the non-trivial equilibriumpoints
are the solutions to the second degree equation resulting from f1(u1) = f2(u2), that is

c1u21 + (1 − c1 − c12c21)u1 + c12 − 1 = 0 (9)

As for statement (1), being E∗
1 globally asymptotically stable implies that there is no inte-

rior equilibrium points on the positive cone. Thus, either f1(u1) > f2(u1) for all u1 ∈ [0, 1]
(that is, c12 ≤ 1 and c21 ≥ 1 and nullclines meet outside the positive cone) or condition (6)
holds (that is equivalent to the discriminant of the solution of Equation (9) being negative
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and nullclines do not meet). However condition (6) needs c12 > 1, which implies (by lin-
earization) that E∗

1 is unstable that is a contradiction with the departure hypothesis, so that
c12 ≤ 1 and c21 ≥ 1 holds. Conversely, assume that c12 ≤ 1 and c21 ≥ 1. Then, analyzing
the phase portrait as in [4] yields the global stability of E∗

1.
Regarding statement 2, we have already said that condition (6) is equivalent to the dis-

criminant of the solution of Equation (9) being negative. That is to say that f1 and f2 do
not meet anywhere which, given the geometry of the nullclines, yields the global stability
of E∗

2.
The remaining statements followmutatismutandi the proof of the corresponding results

for classical competition model; see, for instance, [4] or . �

We turn our attention to these settings that lead to newdynamical scenarios with respect
to those displayed by the classical system. It will turn out that the following curve, that
results from equating to zero the discriminant of the solution of Equation (9) and solving
the resulting equation on c21, plays a key role.

Lemma 3.2: Consider the function

ψc1(c12) :=
1 − c1 + 2

√
c1(c12 − 1)

c12
, c12 ≥ 1 (10)

then, ψc1 is an unimodal function such that

(1) ψc1(1) = 1 − c1 and limc12→+∞ ψc1(c12) = 0.
(2) For c1 > 1, ψc1(c12) = 0 at c12 = 1 + (c1−1)2

4c1 .
(3) The maximum is reached at c12 = c1 + 1 and ψc1(c1 + 1) = 1.

Proof: It follows from direct calculations. �

In the following result, we assume that c12 > 1 and c21 < 1, so that in the classicalmodel
species 2 wins regardless of the initial number of individuals of each species. Then, if the
species 1 competitive ability is not too small so that 1 > c21 > ψc1(c12), then species may
either coexist or species 2 win unconditionally, depending on initial values, what we call
bi-stable conditional coexistence in favour of species 1. Otherwise, species 2 wins always.

Theorem 3.3: Consider system (5) and assume that c12 > 1 and c21 < 1. Then, for any
solution with initial values in the positive cone:

(1) The condition c21 < ψc1(c12) implies that the semi-trivial equilibrium point E∗
2 is

globally asymptotically stable.
(2) Assume now that c21 = ψc1(c12). Then

Ê∗ := (u∗
1, u

∗
2) =

(
c1 + c12c21 − 1

2c1
, 1 − c1 + c12c21 − 1

2c1
c21
)

is the unique equilibrium point of system (5) in the positive cone if, and only if,

0 <
c1 + c12c21 − 1

2c1
< 1 (11)
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In this case E∗
1 is unstable, and there exists a separatrix passing through E∗ that divides

the positive cone into two open regions R1 and R2 such that E∗
i ∈ ∂Ri, i = 1, 2 (where ∂Ri

stands for the boundary of Ri) such that any solution with initial values in R1 converges
to E∗ while any solution with initial values in R2 converges to E∗

2 .
(3) Assume now that c21 > ψc1(c12) and 1 < c12 < c1 + 1. Then there exist two equilib-

rium points in the positive cone if, and only if, condition (11) holds. In such a case, the
equilibrium point E∗− (defined in (8)) is unstable while E∗

2 and E∗+ (defined in (7)) are
asymptotically stable, each of which has a basin of attraction defined by a separatrix
passing through E∗−.

(4) Assume now that 1 > c21 > ψc1(c12) and c12 > c1 + 1. Then the semi-trivial E∗
2 is

asymptotically stable.
(5) If condition 0 < (1 + c1 − c12c21)/2c1 < 1 fails, no positive equilibrium exists.

Proof: Let us recall that the non-trivial equilibrium points E∗± = (u∗
1± u∗

2±) are the solu-
tions to Equation (9) and that

u∗
1± = c1 + c12c21 − 1 ±

√
(c1 + c12c21 − 1)2 − 4c1(c12 − 1)

2c1
Equating to zero the discriminant of the above expression and solving the resulting
equation on c21 yields c21 = ψc1(c12) as defined in (10).

(1) Condition c21 < ψc1(c12) with 1 < c12 < ∞ is equivalent to Equation (9) to have
complex roots, so that there are no non-trivial equilibrium points. Analyzing the flow
of the phase portrait as in [4] yields 1.

(2) The discriminant in u∗
1± is equal zero when c21 = ψc1(c12). Therefore, E∗+ and E∗−

collide into Ê∗, that is in the positive cone.
Regarding the stability, we claim that this is a degenerate case, in the sense that zero is
an eigenvalue of the Jacobian matrix of the flow of system (5) at E∗. Namely, consider
the Jacobian matrix of system (5) at any (u1, u2) ∈ R2

J(u1, u2) =
(

r1 − 2r1u1 − r1
c12u2

(1 + c1u1)2
−r1

c12u2
1 + c1u1

−r2c21u2 r2(1 − 2u2 − c21u1)

)
(12)

At an equilibrium point (u∗
1, u

∗
2) of system (5) it holds that

1 − u∗
1 − c12u∗

2
1 + c1u∗

1
= 0 1 − u∗

2 − c21u∗
1 = 0

thus, the Jacobian matrix (12) at the equilibrium point (u∗
1, u

∗
2) becomes

J(u∗
1, u

∗
2) =

⎛
⎝ r1 − 2r1u∗

1 − r1
1 − u∗

1
1 + c1u∗

1
−r1

c12u∗
2

1 + c1u∗
1−r2c21u∗

2 −r2u∗
2

⎞
⎠ (13)

Zero is an eigenvalue of matrix (13) if, and only if, |J(u∗
1, u

∗
2)| = 0. Direct calculation

lead to

|J(u∗
1, u

∗
2)| = −r1r2u∗

1u
∗
2

1 + c1u∗
1

[
c1 − 1 − 2c1u∗

1 + c12c21
]
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so that

|J(u∗
1, u

∗
2)| = 0 ⇔ u∗

1 = c1 + c12c21 − 1
2c1

that is, at Ê∗.
Besides, consider the corresponding phase portrait (see Figure 3). A first claim is that
regions I and III are trapping regions, meaning that any solution entering one of them
cannot leave such a region. It has two consequences: on the one hand, it precludes the
existence of limit cycles.
On the other hand, solutions with initial values in region I converge to E1 while
solutions with initial values in region III converge to E∗

2 (Figure 3).
(3) We already know that condition c21 > ψc1(c12) ensures that there exist two real non-

trivial (nor semi-trivial) equilibrium points E∗±. In addition, E∗± are in the positive
cone if, and only if, 0 < u∗

1± < 1, since f1(u1) < 0 for u1 > 1.
Note that c21 > ψc1(c12), c12 > 1 along with condition (11) imply that 0 < u∗

1±.
Besides, u∗

1+ < 1 is equivalent to√
(c1 + c12c21 − 1)2 − 4c1(c12 − 1) < c1 + 1 − c12c21 (14)

The right-hand side of the previous inequality is positive since 1 < c12 < 1 + c1 and
0 < c21 < 1. Then squaring both sides of (14) and rearranging terms we get that (14)
is equivalent to

c21 − 1 < 0

that holds because 0 < c21 < 1. As for the stability, consider the particular case that
c12 = c21 = 1. Thus, E∗− = E∗

2 while E
∗+ = E∗

1. Let us argue on E∗+ = E∗
1. In this case,

direct calculations show that E∗+ is hyperbolic and asymptotically stable, in particular,

Figure 4. Competition outcomes of system (5) as function of the competitive strengths c12, c21.
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its eigenvalues are simple and negative, so that this feature remains the same under
small perturbations on c12 � 1 and c21 � 1. Reasoning in the samewaywe get that E∗−
is a saddle for small perturbations on c12 � 1 and c21 � 1.We shall prove that the sign
of the eigenvalues remain constant under the assumptions of 2(a).Given the continuity
of the spectrum, we need to prove that zero is not an eigenvalue of the Jacobianmatrix
neither atE∗+ norE∗−. But we already know from the previous statement that it happens
when E∗+ = E∗ = E∗−.

(4) Note that f1(0) = 1/c12, f2(0) = 1 and f1(1) = 0, f2(0) = 1 − c21. Thus, f2(0) > f1(0)
and f2(1) > f1(1), so that no positive equilibrium points exist.

(5) It follows from the previous discussion. �

So we have completed the analysis of system (5). Figure 4 summarizes the possible out-
comes of system (5), that extends those allowed by the classical system (1) (see the bottom
panel of Figure 1). The above results are deeply discussed in Section 5.

4. Holling type II response on both species

We turn now our attention to the complete model (4). Section 3 suggests that we must
expect either settings such that the classic competition model and system (4) behave qual-
itatively the same (and differences are, if any, in the transient time) or such that dynamics
is a little bit more complicated and expands the coexistence conditions.

After Proposition 3.1, we focus on the existence and stability of the non-trivial equilib-
rium points. The nullclines of system (4) are parabolas, defined by

u2 = f1(u1) = (1 − u1)(1 + c1u1)/c12,

u1 = f2(u2) = (1 − u2)(1 + c2u2)/c21
(15)

so that the equilibrium points are given by the solutions to the fourth degree equation

P(u1) = γ4u41 + γ3u31 + γ2u21 + γ1u1 + γ0 = 0 (16)

where

γ4 = −c21c2
γ3 = 2c1c2(c1 − 1)

γ2 = 2c1c2 − c1(c2 − 1)c12 − c2(c1 − 1)2

γ1 = (c1 − 1)(c2 − 1)c12 − 2(c1 − 1)c2 − c212c21
γ0 = (c2 + c12)(c12 − 1)

(17)

It is well known that there exists a closed formula to solve this equations but, unfortunately,
its expression is too involved to get any biological insight. Then, we adopt a numerical
approach to analyze system (4). However, there are two ecologically meaningful scenarios,
symmetric and asymmetric competition [39], that lead to simplifications in (17) that allow
an analytic study that we address next.
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4.1. Symmetric competition and Holling type II competitive response

Symmetric competition takes place, for instance, between individuals of different species
with similar phenotypic traits [39]. This idea can be translated to system (4) by setting the
model coefficients as

c1 = c2 ≡ c, c12 = c21 ≡ ĉ (18)

see [22]. In such a case, coefficients (17) specialize into

γ4 = −c3

γ3 = 2c2(c − 1)

γ2 = 2c2 − c(c − 1)ĉ − c(c − 1)2

γ1 = ĉ(c − 1)2 − 2(c − 1)c − ĉ3

γ0 = (c + ĉ)(ĉ − 1)

(19)

It turns out that c = 1 and ĉ = 1 are candidate to be threshold values for the behaviour
of the model (for instance, think of Descartes’ Rule). We first claim that the nullclines are
symmetric with respect to the u1 = u2 line, namely

Lemma 4.1: Consider the nullcline curves (15) with coefficients (18), so that

f1(u1) = −c
ĉ

[
u1 − c − 1

2c

]2
+ (c + 1)2

4cĉ

f−1
2 (u1) = c − 1 ±

√
(c + 1)2 − 4cĉu1
2c

are symmetrical with respect to the straight line u2 = u1, meaning that they are reciprocal
functions

(a) f2(f1) = u1, ∀u1 ∈ [(c − 1)/2c,∞).
(b) f1(f2) = u1, ∀u1 ∈ (−∞, (c + 1)24cĉ].

As a consequence, there exists two equilibrium points E∗∗± := (u∗∗
1±, u

∗∗
1±) on the u1 = u2

line with coordinates

u∗∗
1± = c − ĉ − 1 ±

√
(c − ĉ − 1)2 + 4c
2c

(20)

where E∗∗+ is in the positive cone while E∗∗− is in the third quadrant.

Proof: It follows from direct calculations. �

The following proposition describes the dynamics of the model under symmetric com-
petition and includes a tri-stability conditional coexistence scenario that is not allowed by
the classical model (see Figure 5).
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Figure 5. Phase portrait in the symmetric competition scenario that displays the tri-stability conditional
coexistence outcome.

Theorem 4.2: Consider system (4) along with the symmetry conditions c1 = c2 ≡ c and
c12 = c21 ≡ ĉ. Then

(1) For any 0 < ĉ < 1, the equilibrium point E∗∗+ defined by (20) is a global attractor to the
positive cone. Note that E∗∗+ is on the line u2 = u1.

(2) Assume now that ĉ > 1, so that the semi-trivial equilibrium points E∗
1 and E

∗
2 are locally

asymptotically stable, and consider c∗+ := ĉ − 1 + 2
√
ĉ(ĉ − 1). Then,

(a) For any c ∈ (0, c∗], E∗∗+ is a saddle, so that there exists a separatrix passing through
E∗∗+ that defines the basins of attraction of E∗

1 and E
∗
2 .

(b) For any c > c∗ E∗∗+ is locally asymptotically stable. Besides, there is a bifurcation as
c crosses the threshold value c = c∗. Namely, two additional unstable equilibrium
points

E∗∗
uns± = (

u∗∗
1uns±, u

∗∗
2uns±

)
emerge from E∗+, one below the line u2 = u1 and the other one above such a line,
where

u∗∗
1uns± = c + ĉ − 1 ±

√
(c + ĉ − 1)2 − 4(ĉ2 + (c − 1)ĉ − c)

2c
(21)

Furthermore, there exist two separatrices, each of them passing through E∗∗
uns± that

defines the basins of attraction of E∗
1 , E

∗
2 and E

∗∗+ , respectively.

Proof: Let us recall that system (4) possesses, at most, four equilibrium points and
lemma 4.1 yields the expression of two of them.

(1) Wewill show that 0 < ĉ < 1 implies the existence of two equilibrium points located at
the second and fourth quadrant, respectively. Indeed, 0 < ĉ < 1 is equivalent to 1/ĉ >
1 so that considering the nullclines defined in (15), it follows that limu1→−∞ f1(u1) =
−∞ and limu2→−∞ f2(u2) = −∞, that is, f1(u1) and f2(u2) meet somewhere in the
second quadrant. The symmetry of the nullclines imply that there exists another equi-
librium point in the fourth quadrant. The semi-trivial equilibrium points E∗

1 and E∗
2
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are unstable, since 0 < ĉ < 1. There exist two trapping regions in the phase por-
trait defined by the nullclines and the axes, with vertexes {(0, 1), (0, 1/ĉ),E∗∗+ , } and
{(1, 0), (1/ĉ, 0),E∗∗+ , } that preclude the existence of limit cycles. Therefore, all the
orbits converge to E∗∗+ , since all the solutions are bounded, as stated in Proposition 2.2.
The case ĉ = 1 follows from the previous discussion.

(2) Dividing P(u1), the polynomial (16) with coefficients (19), by (u1 − u∗∗
1−)(u1 − u∗∗

1+)
yields the second degree polynomial

c2u21 + c(1 − c − ĉ)u1 + ĉ2 + (c − 1)ĉ − c

whose roots are the u1 component of the other two equilibrium points, namely (21).
Therefore, whether u∗∗

1uns± is real or complex depends on the discriminant of the right-
hand side of Equation (21). Equating to zero the discriminant of (21) is equivalent
to

c = c∗± := ĉ − 1 ± 2
√
ĉ(ĉ − 1)

where c∗− < 0 and c∗+ > 0. Then
(a) For any 0 < c < c∗+ it follows that u∗∗

uns± ∈ C. The stability can be derived as
in the proof of 1. Note that the symmetry in the phase portrait implies that the
straight u1 = u2 is invariant by the flow of system (4) and, in fact, it is a sepa-
ratrix for the basins of attraction of the semi-trivial equilibrium points. Indeed,
the orientation of the orbits on u1 = u2 imply that one of the eigenvalues of the
Jacobian at E∗+ is always negative. The orientation of the orbits on the trapping
regions with vertexes {(0, 1), (0, 1/ĉ),E∗

1} and {(1, 0), (1/ĉ, 0),E∗
2} yield that the

other eigenvalue is positive, so that E∗∗+ is a saddle and therefore its fixed point
index i(E∗∗+ ) = −1 (see [19]).

(b) Direct calculations show that u∗
1+ = u∗∗

1+ = u∗∗
1− at c = c∗+. Thus, two branches

of equilibrium points E∗∗
uns+ and E∗∗

uns− bifurcate from E∗∗+ as c crosses the thresh-
old value c++; in particular, 0 < u∗∗

1− < u∗
1+ < u∗∗

1+ < 1 for any c > c∗+ since the
square with vertexes {(0, 0), (0, 1), (1, 1), (1, 0)} is forward invariant, so that there
are no equilibrium points outside such square. The invariance of the fixed point
index by homotopy [19] implies that

i(E∗
+)+ i(E∗∗

+ )+ i(E∗∗
− ) = −1

and the geometry (and symmetry) of the phase portrait yields that

i(E∗
+) = 1, i(E∗∗

+ ) = i(E∗∗
− ) = −1, c > c∗+,

that means that E∗+ is locally asymptotically stable and E∗∗± are saddle points. �

4.2. Asymmetric competition and Holling type II competitive response

Asymmetric competition [20] takes place, for instance, between individuals of differ-
ent species with dissimilar phenotypic traits [39]. We impose the following constraints
to the model coefficients c2 = 1/c1, c1 = c and c21 = 1/c12, c12 = ĉ, in order to set full
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asymmetric competition. Thus, coefficients (17) become

γ4 = −c

γ3 = 2(c − 1)

γ2 = 2 − (1 − c)ĉ − (c − 1)2/c

γ1 = ĉ − (c − 1)(1/c − 1)ĉ − 2(c − 1)/c

γ0 = (
1/c + ĉ

)
(ĉ − 1) (22)

As before, c = 1 and ĉ = 1 are candidates to be a threshold value for the qualitative
behaviour of the solutions of system (4).

We do not perform a complete analysis of the resulting model; we just state conditions
that lead to bi-stable conditional coexistence scenarios:

Theorem 4.3: Consider system (4) along with the asymmetry conditions c2 = 1/c1 and
c12 = 1/c21 ≡ ĉ. Then

(1) For any 0 < ĉ < 1, it follows that E∗
1 is locally asymptotically stable. Furthermore, there

exists c∗∗ > 0 such that
(a) For any 0 < c < c∗∗, there exist two positive equilibrium points E∗∗

s , E∗∗
u such that

E∗∗
s and E∗

1 are locally asymptotically stable while E∗∗
u is unstable. There is a sep-

aratrix passing through E∗∗
u that defines the basins of attraction of E∗

1 and E∗∗
s ,

respectively.
(b) For any c > c∗∗ E∗

1 is globally asymptotically stable to the positive cone.
(2) Assume now that ĉ > 1. Then, E∗

2 is locally asymptotically stable and there exists c∗∗ > 0
such that
(a) For any 0 < c < c∗∗ E∗

2 is globally asymptotically stable to the positive cone.
(b) For any 0 < c < c∗∗ there exist two positive equilibrium points E∗∗

s , E∗∗
u such that

E∗∗
s and E∗∗

2 are locally asymptotically stable while E∗
u is unstable. There is a sep-

aratrix passing through E∗∗
u that defines the basins of attraction of E∗

2 and E∗∗
s ,

respectively.

Proof: It follows arguing as in Propositions 2.2 and 4.2. �

4.3. The general case: numerical analysis

As we have already said, the equilibrium points of system (4) are the roots of the 4th degree
polynomial Equation (16). These solutions depend on the coefficients (17) that depend on
ci and cij, that is, on four parameters. Close expressions exist for the roots of (16), but are
so involved that we could not derive any biological information from them. We have also
attempted to use Cardano’s and Ferrari’s theorem or Sturm’s sequence, Descartes’s rule and
Burdan–Fourier theorem with no positive results.

Therefore, we perform a numerical analysis using an algorithm written in MatLab soft-
ware. From the results found in Sections 3, 4.1 and 4.2 we decided to plot diagrams that
display, for fixed values of ci, i = 1, 2, the number of equilibrium points and its stability for
c12, cji ranging in a given interval, as in Figure 7.
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As there are no analytical results for the complete model different from those already
obtained at the beginning of Section 2, we left the results of the numerical experiments to
the discussion and conclusions Section 5.

5. Discussion and conclusions

In thismanuscript, we revisit he classical competitionmodel (1) under the assumption that
interfering with competitors of other species takes time.We have found that (i) the classical
competition model is a particular case of the model derived herein when interactions do
not consume time, (ii) the more time interfering with competitions takes the more likely
coexistence is and, indeed, (iii) the new model allows multi-stability scenarios.

Geometrically, accounting for the time spent competing bends nullclines from the
straight lines found in the classical model into a parabolic shape. This feature has been
previously found in [30,38] under different departure hypotheses and not fully analyzed
(only qualitatively). Compare the nullcline of species 1 in the classical competition model
(u2 = f̂1(u1), left panel in Figure 6) and in system (4) (u2 = f1(u1), central and right panels
in Figure 6), where

u2 = f̂1(u1) := 1
c12

(1 − u1) u2 = f1(u1) := 1
c12

(−c1u21 + (c1 − 1)u1 + 1
)

(23)

Let us recall that the bounded region defined by the axes and the nullcline of species 1
defines the values of the population size of species 2 that allow species 1 to keep growing.

The classical model estates that the larger is u1, the less tolerant is to the presence of
u2, meaning that as u1 increases, u1 keeps growing only if u2 decreases (according to the
nullcline slope).

On the contrary, accounting for the time spent competing weakens of even reverses this
trend, since the region below the nullcline increases with c1 > 0. In words, the more time
species 2 needs to snatch resources to species 1, the less time has species 2 to compete with
other individuals of species 1. We may say that such a time is moderate for 0 < c1 < 1 and
large if 1 < c1. Looking closer to the nullcline of u1 in system (4), note that achieves its
maximum ũ2 := (c1 + 1)2/(4c1) at ũ1 := (c1 − 1)/(2c1). Then,

Figure 6. The nullcline u′
1 = 0 of system (4) for increasing values of c1: left, c1 = 0 (i.e. the classical

Lotka–Volterra model (1)), centre, c1 ∈ (0, 1) and right, c1 > 1.
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Figure 7. Competition outcomes of system (5) as function of the competitive strengths c12, c21 for
increasing values of c1 (from left to right). The code colour is the same as in Figure 1 except the dark
blue region that represents bi-stable conditional coexistence region in favour of species 1. The boundary
between the blue regions is the graph of c21 = ψc1(c12). The figure is based on numerical calculations
(the source code is available in [9]) alingment!!! and has been edited to improve it. Parameter values are
0 < c12, c21 < 2, c2 = 0 and, from left to right, c1 = 0.3, 1, 1.8.

• Condition 0 < c1 < 1 implies that ũ1 < 0 and the nullcline defined by f1 in (23) is
decreasing for u1 ≥ 0 (see central panel in Figure 6). The behaviour is qualitatively the
same as in the classical Lotka–Volterramodel, although the effect of the time spent com-
peting is not completely negligible and ‘bends’ the nullcline softening the effect of the
other species’ competitive pressure.

• If c1 > 1, geometrically, the maximum of the parabola defined by f1 in Equation (15) is
in the first quadrant (right panel in Figure 6). As a consequence, if 0 < u1 < ũ1 species
1 keeps growing even if u2 increases moderately (but reaming below the nullcline). It
is possible because there are not so many encounters and, if so, species 2 spends many
time competing and can not go immediately for another resource. However, as species
1 growths and crosses the threshold value û1 this trend is reversed, although things are
still better for them that in the classical model.

Then, ũ1 is a threshold value for u1 to tolerate an increasing amount of individuals of
species 2. Interestingly, note that ũ1 is bounded from above while ũ2 is unbounded for
increasing values of c1. On the one hand, that is to say that intra-species competitive pres-
sure will show up at ũ1, since the maximum is reached at u1 = ũ1 regardless of c1 > 1.
However, if 0 < c1 < 1 (so that ũ1 < 0) intra-species pressure is added to inter-species
pressure, although the later is slightly weaken by the little time spent competing. On the
other hand, ũ2 still increases if c1 does so. Thus, we can somehow discriminate the toler-
ance to intra and inter-species crowd. This feature is particularly important to species 1,
for instance, when c12 > 1 and c21 < 1. In such a case, species 1 will go extinct for small
enough values of c1, since the nullcline of species 1 is below the nullcline of species 2 (as,
for instance, in the bottom right panel in Figure 2). However, for large enough values of
c1 the nullclines switch their position giving rise to a bi-stable conditional coexistence in
favour of species 2 scenario (as in the top right panel in Figure 2).

According to [33,38] the common interpretation of the early theory of competition
[13,23,35] is that coexistence results when intra-species competition limits species’ density
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more strongly than inter-species competition. From this point of view, accounting for
the time spent competing balances the estimates of the relative strength of intra and
inter-species competition.

Coefficient c1 is a conglomerate of different factors that include the amount of time spent
interfering with the other species Tint, the searching rate and the probability of interfering
with other species individual. Therefore, it suggests different strategies that may improve
species 1 chances to survive. For instance, from a behavioural point of view, the above dis-
cussion suggests that resist to species 2 may be beneficial to species 1 [26,28] (note that our
model does not take into account possible injuries or harms derived from facing species 2).

Ultimately, the time spent competing becomes a trade off between the competitive abil-
ities of the competing species. We have found a full description of this compensatory
mechanism when only one species displays competitive response.

We have already said that species 1 better tolerates competing with species 2 if compe-
tition is not instantaneous to species 2. In such a case the curve c21 = ψc1(c12) defined in
(10) (see Lemma 3.2) plays a key role.

Let us assume that 0 < c21 < 1 and 1 < c12, that corresponds to the (unconditional)
species 1 exclusion in the classical model. Proposition 3.3 tells us that both species can
coexist via bi-stable conditional coexistence if

0 < ψc1(c12) < c21 < 1

In words, a larger competitive strength of species 2 can be compensated by a larger ratio
of individuals of species 1 if competition takes enough time to species 2. The limits of this
trade off are defined by ψc1 (see Figure 7), that depends on c1.

On the contrary (that is, if c21 < ψc1(c12) but still 0 < c21 < 1 and 1 < c12), species 1
will go extinct regardless of the initial amount of individuals of each species. In such a
case, species 2 does not spend time enough to compensate the difference on competitive
abilities.

Interestingly, the Holling type II competitive response has no effect on the long term
behaviour of the model in case of strong competition (1 < c21 and 1 < c12) and the
new region in the c12c21 space parameter comprised between c12 = 1, c21 = 1 and c21 =
ψc1(c12) is, indeed, a kind of transition region between the coexistence region (0 < c21 < 1
0 < c12 < 1), the species 1 exclusion region (1 > c21 and 1 < c12) and the conditional
exclusion region (1 < c21 and 1 < c12).

Competitive response on both species. In the overall, if competing takes time to
both competing species then the competitive pressure is softer, which is beneficial for
coexistence.

We have first analyzed the symmetric and asymmetric competition scenarios, that have
its own applied interest and for which we have achieved analytical results with close
expressions for equilibrium and threshold values.

Assume now that competition is (perfectly) symmetric in the sense of c12 = c21 = ĉ
and c1 = c2 = c. Then, there exists a global positive attractor to the positive cone if ĉ < 1
and regardless of the value of c. On the other hand, ĉ > 1 implies that (unconditional)
global coexistence is not possible anymore, and either tri-stable conditional coexistence or
conditional exclusion will happen, see Figure 8.

The classical model yields one species exclusion due to priority effects but, instead, a
new dynamical scenario raises in the form of tri-stable conditional coexistence: depending
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Figure 8. Competition outcomes of system (4) in case of symmetric competition: c12 = c21 = ĉ and
c1 = c2 = c. Top left panel corresponds to global coexistence (0 < ĉ < 1 and any c> 0). Central top
panel corresponds to conditional coexistence (ĉ > 1 and c > ĉ − 1 + 2

√
ĉ(ĉ − 1)). Top right panel

corresponds conditional exclusion (ĉ > 1 and 0 < c < ĉ − 1 + 2
√
ĉ(ĉ − 1)).

Figure 9. Competition outcomes of system (4) as function of the competitive strengths c12, c21 for a
fixedvalueof c1 and increasingvaluesof c2. The code colour is the sameas in Figure 1except thedarkblue
region that represents bi-stable conditional coexistence region in favour of species 1, dark-red region
stands for bi-stable conditional coexistence region in favour of species 2 and the dark-grey region refers
for the tri-stable conditional coexistence region. The figure is based on numerical calculations (the code
is available in [9]) and has been edited to improve it. Parameter values are 0 < c12, c21 < 2, c1 = 1.9
and, from left to right c2 = 0, 1.15, 1.65, 1.9, 6, 100, 000.
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on the initial number of individuals of each species either will coexist or one of themwill go
extinct. This result is straight against the classical thoughts [13,23,35], although it makes
perfect sense since, how can one distinguish intra from inter species competition in so
similar species?

When competition is (perfectly) asymmetric, meaning that c21 = 1/c12 and that c2 =
1/c1, the classicalmodel does not allow species coexistence, sincemild competition (cij < 1
for i �= j = 1, 2) is not possible. However, the model presented herein allows bi-stable
species coexistence in favour of the lower competitor if the upper competitor expends large
enough time taking resources (see Proposition 4.3). Again, this result is at odds with classi-
cal results [13,23,35] and illustrates the importance of looking carefully at how interactions
take place.

Finally, we examine via numerical results the competition outcomes for the complete
system (4), that are not qualitatively different from the dynamical scenarios already shown.
The source code used can be found in [9].

We have found that ci > 0 for i = 1, 2 yield the existence of bi-stable conditional coexis-
tence regions in favour of each species (see the dark red and dark blue regions in Figure 9).
The curves (that are not straight lines) delimiting such a regions are the counterparts of
the curve c21 = ψc1(c12) defined by (10), that we denote by cji = ψci,cj(cij), for i �= j. Note
that while c21 = ψc1(c12) is confined in the strap (1,∞)× (0, 1], the curves cji = ψci,cj(cij)
meet on (1,∞)× (1,∞) defining the so-called tri-stable conditional coexistence sub-
region. The classical model (1) predicts conditional exclusion due to priority effects in
this region. Instead, model (4) allows species to coexist, again, provided that competitive
abilities, initial values and competing time are well balanced, see Figure 9.

In words, in the strong competition scenario the mechanism(s) under the Holling type
II competitive response play no role if only one of the species displays it, but facilitates
coexistence when both species display it.

Note that the tri-stability region leans towards the axis c12 if c1 > c2 and conversely.
Indeed, consider a fixed value of c1 > 0 and lets see the effect of increasing c2 (see Figure 9).
As previously mentioned, a bi-stable coexistence region in favour of species 2 appears as
c2 becomes larger than 0. Besides, the bi-stable coexistence region in favour of species 1 is
reduced as c2 increases (see the panels in Figure 9). Finally, numerical experiments suggest
that the bi-stable coexistence region in favour of species 1 converges to a vertical strip as
c2 → ∞ (see bottom left panel in Figure 9).

Interestingly, both bi- and tri-stable conditional coexistence have been also found in the
context of competition models on patchy environments with individual dispersal [25] or
eco-epidemic competition models [8].
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