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Abstract

We investigate the role of group defense in the context of species interference competition by incorporating a Holling
ype IV like interaction term into the classical model. We have found a trade-off between species competitive strength and
efense efficiency that reduces inter-species competition pressure. Thus, group defense promotes both each species probability
f survival and species coexistence in two different ways: (i) Enlarging the range of parameter values yielding species
urvival/coexistence and (ii) Allowing for multi-stability scenarios, including global coexistence through several simultaneous
oexistence asymptotically stable states that, to our knowledge, have not been previously reported in pure interference

competition models.
© 2022 The Author(s). Published by Elsevier B.V. on behalf of International Association for Mathematics and Computers in
Simulation (IMACS). This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Keywords: Species competition; Competitive response; Multi-stable scenarios

1. Introduction

Species competition is one of the main drivers of community dynamics, and it is almost ubiquitous in Nature.
ey questions are whether competing species will go extinct, survive alone, or coexist and, if so, the dynamics
f the resulting community [9,47]. Scientists distinguish exploitative competition from interference competition,
epending on whether resource dynamics are explicit or not in the underlying model, respectively [19,42].

Exploitative competition (also resource–consumer competition) may take different forms, consisting one of them
f two competing resources (or preys) and one consumer (or predator) that feeds on either one of them or both
f them [17,52]. This class of models can be thought of as an interference competition model coupled to a
redatory structure. In this context defense can be against competitors or predators/consumers, but only defense
gainst consumers can be found in the literature. Competition-defense (against consumers) trade-offs have been
idely analyzed, and considered for long time as a coexistence mechanism [11,24,43]. However, recent works in

oexistence theory reveal that these trade-offs cannot explain coexistence by themselves, and further conditions are
eeded to allow long-term coexistence [9,10,20]: niche partitioning and the right balance between prey competition
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and predator pressure. Indeed, recent experimental results in consumer–resource competition suggest that defense
against predators may either weaken or enhance species coexistence [45].

This work is aimed to introduce group defense in interference competition models. Interference competition takes
place directly between individuals. [56] identifies four main types of interference, namely (i) reduction in foraging
rate [51] (for instance, reduction in searching time or food intake rate), (ii) increased metabolic needs because of the
interference activity, (iii) reduced survival rate [3,13,46] (for instance, through violent contests or aggressions), and
(iv) reduced reproduction rate [32] (e.g., predation on egg or larvae, or disturbing nesting/breeding activities). This
classification is not exhaustive; for instance, interference may take place also by precluding competitors physical
settlement [27,53].

It is well described in the literature that species competition triggers evolution either selecting individuals with
better competitive abilities [4,39] or promoting new adaptive strategies: [15,34,35], alternative life-history [33],
dispersal strategies [36,41] or herd-type behavior [1,6,37], being the last one a form of group defense [30] that has
been observed in both vertebrate and invertebrate animals [38]. However, group defense in interference competition
may take place in a different form than the structured social defensive behavior considered in [37]. For example,
the ant species Aphaenogaster Cockerelli and Pogonomyrmex Barbatus compete for seeds in the Chihuahuan desert.
Before sunrise, when P. Barbatus colonies become active, A. Cockerelli colonies completely plug the nest entrances
of some P. Barbatus colonies, thereby delaying the onset of P. Barbatus foraging behavior. P. Barbatus colonies
closer to A. cockerelli were plugged more frequently than more distant colonies [27] (see also [53]). In addition,
it has been recently proven [49] that collective action during inter-group competition in chimpanzees populations
(Pan troglodytes verus) enhances in-group cohesion which, in the end, results in improving group survival chances.

Group defense has deserved attention in the context of predator–prey models being [16], to our knowledge,
the first one. This mechanism usually modelizes predator intake rate as a one-humped function that depends on the
number of prey. It means that at low prey densities the predator intake rate increases as the number of prey increases:
the more prey, the more likely is to catch them. However, once population prey achieves a critical size, there are
enough individuals to face predators and, thus, defend themselves. Therefore, predator intake rate decreases as the
number of prey crosses this threshold value. This feature takes the general form of

mx
a0 + a1x + a2x2

and it is named after Holling type IV functional response [12] (but see also [29,54]). Note that this functional
form was first introduced in the context of microbiology [2] and was named after Monod–Haldane functional
response. Defense mechanism have been also widely analyzed in consumer–resource (i.e., exploitative) competition
models [25], although defense is against consumers, and not against competitors.

Considering interaction terms different from the classical one has deserved relatively less attention in interference
competition models than in predator–prey or exploitative competition models. Perhaps it is because competition
systems are also competitive in the sense of [22] so that solutions converge monotonically towards an equilibrium
point. However, few modifications of the classical competition model have been recently published as [6,37] where
competing species display herd behavior (a type of structured group defensive behavior), or [8] were considering the
time elapsed in competition leads to a competition model with the so-called Holling type II competitive response.

In this work, we derive an extension of the classical interference competition model [18] that incorporates a
olling type IV interference term. We have found a trade-off between species competitive strength and defense

fficiency that both promotes species coexistence and allows for new dynamical scenarios that extend those found
n [6,8,32] or [37]. Group defense reduces inter-species competition pressure, becoming a stabilizing mechanism
f coexistence in the sense of [9]. New multi-stability scenarios are allowed, including multiple coexistence states.
e describe all the possible competition outcomes when one of the species exhibits group defense, and provide

hreshold values enabling one or another outcome. We fully address the case of symmetric competition when both
pecies display the above-mentioned feature, and numerically explore the most general case.

We discuss the impact of group defense on transient dynamics, and also describe a jump effect on the asymptotic
ehavior that may arise due to small variations on the model coefficients. Our findings may have implications in
he understanding of the above-mentioned class of consumer-resource competition models.

This work is organized as follows: In Section 2 we derive the above-mentioned model. In Section 3 we assume
hat just one of the species displays group defense. The full system turned out to be too complex to perform a

ull analytical study. Thus Section 4 is devoted to the analysis of the full model under symmetric competition, and
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we leave a numerical approach to the most general case to Section 5. Finally, Section 5 contains the discussion of
results and final conclusions. For the convenience of the reader, the results in mathematical form have been sent to
Appendix A, B, and C.

2. Deriving the Holling type IV competition model and preliminary results

The departure model is the classical Lotka–Volterra competition model [40]{
x ′

1 = r1x1 − a11x2
1 − a12x1x2,

x ′

2 = r2x2 − a22x2
2 − a21x1x2,

(1)

here xi stands for the amount of individuals of species i = 1, 2, ri > 0 is the intrinsic growth rate of species
= 1, 2 and ai j > 0 the coefficient accounting for intra (i = j) and inter (i ̸= j) species competition, for i, j = 1, 2.
e considered the emergent carrying capacities formulation as in [48,50].
The per capita growth rate of the classical model (1) decreases linearly with xi and x j (i ̸= j), i.e.,

x ′

i

xi
= ri − ai i xi − ai j x j , i ̸= j, i, j = 1, 2. (2)

ote that the competitive pressure of a fixed number of individuals of species j on species i is the same regardless
f the number of individuals of species i , and it would not make sense in reality. For instance, a fixed number of
pecies j cannot affect the same, say, 20 or 2000 individuals of species i .

We present an alternative formulation of the classical model (1) that, essentially, is an adaptation of [28] to the
urrent context. The first part of the exposition follows [8]: as in [23], we assume that the number Ni of competitors
f species i ̸= j that become extinct due to the interference of a single individual of species j ̸= i within a fixed
ime interval T (in a fixed region) is given by

Ni = aTactvxi (3)

here xi is the total amount of individuals of species i , Tactv stands for the time that individuals are active (searching
or/defending resources or territories, matching, etc.), a is the product of the competitors finding rate times the rate
f victories of the competitor times the probability of meeting a competitor. If interference (interaction among
ompetitors) does not take time, T = Tactv; otherwise T > Tactv . Let Tint be the average time that interference
akes, so that Tactv = T − Tint Ni . Plugging this expression in (3) yields

Ni = aTactvxi = a(T − Tint Ni )xi (4)

hat is equivalent to

Ni =
aT xi

1 + aTint xi
(5)

at we called Holling type II competitive response due to interference time in [8]. We assume now that the
nterference time T is not constant; instead, it increases linearly with the number of individuals of species i

Tint (xi ) = (b + dxi )Tint (6)

hat modelizes group defense, where b is a constant and d is the (species i) average group defense effect. Note that
= 0 means that assembling individuals of species i has no effect on interference time. Also, b = 0 means that

interference time is negligible compared to group defense for species i . Using (6) in (5) leads to

Ni =
aT xi

1 + abTint xi + adTint x2
i
, (7)

hat is equivalent to equation (1.31) in [28] for obvious reasons, we refer to this term as Holling type IV competitive
esponse due group defense. Indeed, we assume b = 0 from now on. Replacing ai j xi , i ̸= j , in system (1) by (7)
nd relabeling coefficients yields

x ′

i

xi
= ri − ai i xi −

ai j x j

1 + ai x2
i
, i ̸= j, i, j = 1, 2, (8)

here ai = adTint . Thus, the inter-species competition rate is constant only if interactions are instantaneous
i.e., T = 0). In other case, the effect of species j on species i is density dependent, a decreasing function of x2
int i
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Fig. 1. Possible phase portraits of the classical competition system (system (9) with ci = 0, i = 1, 2). The straight line fi stands for the
ullcline of species i = 1, 2. Solid points are asymptotically stable equilibrium points and empty points are unstable equilibria.

or a fixed amount of individuals of species j . Thus, species i population size affects the balance between intra and
nter-species competition, that is key for species extinction/survival (and, thus, species coexistence) [42,55]. Letting
i = 0 in (8) yield the classical per capita population growth rate (2).

Let us rewrite system (8) in a suitable way by setting ui = ai i xi/ri , ci j = ai jr j/(ri a j j ) and ci = air2
i /a2

i i , that
yields ⎧⎪⎪⎪⎨⎪⎪⎪⎩

u′

1 = r1

(
u1 − u2

1 −
c12u1u2
1+c1u2

1

)
,

u′

2 = r2

(
u2 − u2

2 −
c21u2u1
1+c2u2

2

)
.

(9)

ystem (1) is a particular case of (9) when ci = 0. Direct calculations show that system (9) is well behaved: the
xes are invariant, solutions are bounded from above and the positive cone is forward invariant; the interested reader
an found the result and its proof in Theorem 1, in Appendix A. Note that the flow of system (9) in the positive
one is strictly decreasing outside the rectangle [0, 1] × [0, 1]. Thus, there is no equilibrium point for system (9)

in (1, +∞) × (1, +∞).
For the convenience of the reader, we first recall the basic results on the classical competition model (1) in

Table 1 (columns 1, 2 and 3; see also Figs. 1 and 2). The results are well known and can be found in [40], section
3.5. We denote E∗

1 = (1, 0) and E∗

2 = (0, 1) the so-called semi-trivial equilibrium points, that are fixed points of
oth system (1) and system (9). Generally, E∗ would refer to a positive (meaning interior, in the positive cone)
quilibrium point; there exists a closed form for E∗ referred to system (1). Table 1 includes also (but not only)
he stability conditions for E∗

1 and E∗

2 relative to system (9), that can be derived by a standard analysis of the
igenvalues of the corresponding Jacobian matrix (see Theorem 2). The acronym GAS (LAS, resp) refers to the
lobal (local, resp) asymptotic stability of a fixed point.
429
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Fig. 2. Possible competition outcomes of the classical competition system (system (9) with ci = 0, i = 1, 2) for different values of the
ompetitive strength c12 and c21.

Table 1
E∗

1 and E∗

2 stand for the semi-trivial equilibrium points and E∗, E∗
± are interior (coexistence) equilibrium points. GAS (LAS, resp) stands for

eing global (local, resp) asymptotically stable, and unst. for unstable. Column 1 summarizes the competitive outcomes of the classical model
1) depending on competitive strengths c12 and c21 (columns 2 and 3). Column 4 displays the values of c1 that lead to each competition
utcome of system (9) in column 5.

Classical model c12 c21 c1 Holling IV model

E∗

1 GAS, E∗

2 unst. (0, 1) (1, +∞) (0, +∞) E∗

1 GAS, E∗

2 unst.

E∗

1 , E∗

2 LAS, E∗

3 unst. (1, +∞) (1, +∞) (0, +∞) E∗

1 , E∗

2 LAS, E∗
+ unst.

(0, c∗

1−
) E∗

1 unst., E∗

2 GAS
E∗

1 unst., E∗

2 GAS (1, +∞) (0, 1)
(c∗

1−
, +∞) E∗

1 , E∗
+ unst., E∗

2 , E∗ LAS

(0, c∗

1−
) ∪ (c∗

1+
, +∞) E∗

1 , E∗

2 unst., E∗ GAS
E∗

1 , E∗

2 unst., E∗

3 GAS (0, 1) (0, 1)
(c∗

1−
, c∗

1+
) E∗

1 , E∗

2 , E∗
+ unst., E∗

−, E∗ LAS

The results summarized in Table 1 (columns 1, 2 and 3) point out 1 as a threshold value to compare with the
ompetitive strength ci j , i ̸= j . Let us recall that the competitive strength

ci j =
ai j/ri

a j j/r j
(10)

relates intra and inter-species competition coefficient and species intrinsic growth rates (growth rates must be taken
into account in order to avoid senseless results [31]). In short, species j cannot drive species i to extinction if, and
only if, the competitive strength ci j , i ̸= j , of species j on species i is less than 1. It is equivalent to say that
inter-species competition is lower than species i growth rate times species i intra-species competition.

We will refer to classical coexistence when there is a single interior GAS equilibrium point, and to conditional
extinction or extinction due to priority effects when E∗

i , i = 1, 2 are LAS, there exists an interior unstable equilibrium
point with a separatrix passing through it that defines their basins of attraction.

Let us note that the following sections include numerical simulations to either illustrate analytical results or
explore those settings too complicated to be analytically analyzed. The corresponding parameter values have been
chosen ad hoc to better illustrate the underlying mathematical result.

3. Holling type IV competitive response on just one species

We now assume that only species 1 exhibits group defense, that is, we analyze system⎧⎨⎩u′

1 = r1

(
u1 − u2

1 −
c12u1u2
1+c1u2

1

)
′ 2

(11)

u2 = r2(u2 − u2 − c21u1u2)
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Fig. 3. Competition outcomes of system (11) as function of competitive strengths c12, c21 for increasing values of c1 (from left to right).
The color is de same as in classical model Fig. 1 except the dark blue and the yellow regions that represent conditional coexistence (species
either coexist or species 1 goes depending on the initial value, see panel (vi) in Fig Fig. 4) and global bi-stable coexistence (two coexistence
equilibrium points, see panel (v) in Fig. Fig. 4). The above panels are based on numerical calculations with the code source available in [7].
The code numerically calculates the equilibrium points of the competition model for the parameter values ranging 0 < c12, c21 < 2 and
(from left to right) c1 = 1.95, 2.45, 9. Then, the stability is checked computing the eigenvalues of the Jacobian matrix at the corresponding
equilibrium point. The resulting plots have been edited to improve them. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)

The interested reader can find the results formulated as theorems with their corresponding proofs in Appendix A.
We focus on the interior (coexistence) equilibrium points by analyzing the nullclines of system (11),

u2 = f1(u1) =
1

c12
(−c1u3

1 + c1u2
1 − u1 + 1), u2 = f2(u1) = 1 − c21u1 (12)

ote that u2 = f2(u1) is a straight line, as in the classical model. In contrast, the nullcline u2 = f1(u1) is a third
egree polynomial. This feature is behind the differences between the outcomes of the classical model (11) and
he current model. See Fig. 4 and, in particular, panels (v) and (vi) (compare to Fig. 1). Equating f1(u1) = f2(u1)
ields

P(u1) = u3
1 − u2

1 +
s
c1

u1 −
r
c1

= 0, (13)

here, r = 1 − c12 and s = 1 − c12c21. We extensively use Sturm’s Theorem, that we summarize next for the
onvenience of the reader. Sturm’s Theorem allows one to count the number of zeros of a polynomial in a given
nterval from the change of sign at the extremes of the interval of the so-called Sturm’s sequence. The Strum’s
equence associated to P(u1) is

Seqp = {P(u1), P ′(u1), R1(u1), R2(u1)} (14)

here the second term is the derivative of P(u1) and Ri (u1), i = 1, 2, is the remainder of an euclidean division:
R1(u1) = −rem(P(u1), P ′(u1)) and R2(u1) = −rem(P ′(u1), R1(u1)). We already know that any interior fixed point
f (9) is on [0, 1] × [0, 1]. Let V (û1) stand for the number of sign changes in the terms of the sequence (14) at
1 = û1. Then, V (0) − V (1) yields the number of real roots of P(u1) in [0, 1].

Most terms in V (0) and V (1) have constant sign. Direct calculations show that V (0)− V (1) depends on whether
12 and c21 are smaller or larger than 1 and on the relative size of c1 to the threshold values c1±∗ defined by

c∗

1±
=

27r2
− 18sr − s2

±
√

(r − s)(9r − s)3

8r
(15)

hat results from solving R2(1) = 0 in c1. The possible competition outcomes are summarized in Table 1, see also
ig. 3. In addition, Fig. 4 displays all the possible phase portrait configurations of system (11).

It is apparent that system (11) allows for two new dynamical scenario (compared to the classical system (1)):

• Conditional coexistence (of type I) in favor of species 1, that arises when E∗

2 is LAS, E∗

2 unstable, there exist
a positive LAS equilibrium point E∗ , and a positive unstable equilibrium point E∗ whose stable manifold
+ +
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(

Fig. 4. Possible phase portraits of system (11) with competitive response just in species 1 (c2 = 0). The curve fi stands for the
nullcline of species i = 1, 2. The parameter ranges leading to each scenario are summarized in Table 1. From top to down, from left
to right, panels correspond to rows 1, 3, 2, 5, 6 and 4 in Table 1, respectively. Parameter values (i) (c1, c12, c21) = (6.7, 0.92, 1.28), (ii)
c1, c12, c21) = (2.5, 1.64, 0.77), (iii) (c1, c12, c21) = (8.7, 1.751.13), (iv) (c1, c12, c21) = (6, 0.84, 0.71), (v) (c1, c12, c21) = (3.35, 0.97, 0.17),

(vi) (c1, c12, c21) = (6.7, 1.4, 0.63).

defines a separatrix that delimits the basins of attraction of E∗

2 and E∗. It happens for c12 > 1, 0 < c21 < 1
and c1 > c∗

1−
, see panel (vi) in Fig. 4, Table 1 and Theorem 5.

• Global bi-stable coexistence arises when E∗

1 and E∗

2 are unstable, there exist two interior LAS equilibrium
points E∗

−
and E∗, and another interior unstable equilibrium point E∗

+
whose stable manifold defines a

separatrix that delimits the basins of attraction of E∗
−

and E∗. It happens when 0 < c12 < 1, 0 < c21 < 1 and
c∗

1−
< c1 < c∗

1+
, see Table 1. See the last row in Table 1, panel (v) in Fig. 4 and Theorem 6.

In the overall, the long term behavior of system (11) is the same as the classical model (1) for c21 > 1 although
there are quantitative differences as c1 > 0, see Sections 5.1 and 5.2. In addition to the quantitative differences,
qualitatively new scenarios may appear for 0 < c21 < 1. See Section 5.2 for further details.
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4. Holling type IV competitive response on both species

In this section, we focus on the complete model (9) by assuming that both species exhibit group defensive
behavior. We already know that system (9) is well behaved (see Theorem 3) and we seek for the existence and
stability of the positive equilibrium points. The nullclines of system (9) are third degree polynomials defined by

u2 = f1(u1) =
1

c12
(−c1u3

1 + c1u2
1 − u1 + 1), u1 = f2(u2) =

1
c21

(−c2u3
2 + c2u2

2 − u2 + 1) (16)

so that the positive equilibrium points are given by the positive roots of

P(u1) =
1

c3
12c21

9∑
k=0

γkuk
1 = 0, (17)

here
γ9 = c3

1c2 γ8 = −3c3
1c2

γ7 = 3c2
1c2(1 + c1) γ6 = c2

1c2(c12 − c1 − 9)
γ5 = c1c2[c1(9 − 2c12) + 3] γ4 = c1c2[c1c12 − 3c1 + 2c12 − 9]
γ3 = c12c1(c12 − 4c2) + c2(9c1 + 1) γ2 = c12[c2(1 + 2c1) − c1c12] − 3c2(c1 + 1)
γ1 = c2

12(1 − c12c21) + c2(3 − 2c12) γ0 = (c12 − 1)(c2
12 + c2)

(18)

nfortunately, equation P(u1) = 0 is too involved to get any biological insight, and it is numerically explored in
ection 5.3. However, analytical results can be obtained in the following particular case.

.1. Symmetric competition

Typically, symmetric competition takes place between individuals of different species with similar phenotypic
raits [26,57]. Thus, we set the competitive strengths and the group defense coefficients as

c12 = c21 ≡ c•• c1 = c2 ≡ c• (19)

n such a case, Eq. (17) can be written as:

P(u1) =
1

c4
••

g(u1)h(u1), (20)

here,

g(u1) = c•u3
1 − c•u2

1 + (1 + c••)u1 − 1 (21)

nd
h(u1) = c3

•
u6

1 − 2c3
•
u5

1 +
[
c3
•
+ c2

•
(2 − c••)

]
u4

1
− 2c2

•
(2 − c••)u3

1 +
[
c2
•
(2 − c•• + c•(c2

••
) − c•• + 1)

]
u2

1
− (c2

••
− 2c•• + 2)u1 + (c• + c2

••
− c•c•• − c3

••
)

(22)

he main analysis tool is, again, the Sturm’s Theorem applied to the g(u1) and h(u1) (defined in (21) and (22)) in
he polynomial Eq. (20). A precise theorem formulation along with a rigorous proof can be found in Theorem 7 in
ppendix C. A summary of the results can be found in Table 2 and Figs. 5 and 6.
We compute the number of change of signs of the Sturm’s sequence of polynomial (20) at u1 = 0, 1 as in

ection 3. In this case, we do so through Sturm’s sequences of (21) and (22) denoted by

Seqg = {g(u1), g′(u1), R1(u1), R2(u1)} (23)

Seqh = {h(u1), h′(u1), T1(u1), T2(u1), T3(u1), T4(u1), T5(u1)} (24)

any terms in these sequences have constant sign at u1 = 0, 1. It also turns out that R2(u1), T4(u1), T5(u1) may
isplay different sign at u1 = 0, 1 depending on the value of c• and c••. Solving the corresponding equations on
• yield threshold values defined by

∗∗ −3c2
••+20c••−8±

√
c••(9c••−8)(c••+8)2 (25)
c

•±
(c••) = 8

433
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Table 2
Classification of competition outcomes of system (9) under symmetry conditions (19) as function of c•• and c•.

Competition outcome Competitive strength c•• Defense coefficient c•

Classical global coexistence c•• ∈
(
0, 8

9

)
c• ∈ (0, +∞)

Classical global coexistence c•• ∈
( 8

9 , 1
)

c• ∈ (0, c∗∗
•−) ∪ (c∗∗

•+, +∞)
Bi-stable global coexistence c• ∈ (c∗∗

•−, c∗∗
•+)

Tri-stable global coexistence c• ∈ (c∗∗
•+, c∗∗∗

• )

Conditional coexistence type I c•• ∈ (1, 8) c• ∈ (0, c∗
•+) ∪ (0, c∗

•+)
Conditional exclusion type I c• ∈ (c∗∗

•+, +∞)

Conditional exclusion type I c•• ∈ (8, ĉ••) c• ∈ (0, c∗
•−) ∪ (c∗

•+, c∗∗
•+)

Conditional exclusion type II c• ∈ (c∗
•−, c∗

•+)
Conditional coexistence type I c• ∈ (c∗∗

•+, +∞)

Conditional exclusion type I c•• ∈ (ĉ••, +∞) c• ∈ (0, c∗
•−)

Conditional exclusion type II c• ∈ (c∗
•−, c∗∗

•+)
Conditional coexistence type II c• ∈ (c∗∗

•+, c∗
•+)

Conditional coexistence type I c• ∈ (c∗
•+, +∞)

Fig. 5. Classification of system (9) competition outcomes under symmetry conditions (19) as a function of c•• and c•. In green: global
species coexistence (light — classical, yellow — bi-stable, dark — tri-stable). In purple: species conditional coexistence (light — type I,
dark — type II). In gray: species conditional exclusion (light — type I, dark — type II). The figure has been computed as described at the
foot of Fig. 3. Parameters range: 0 < ĉ < 200 and 0 < c < 50. Note that we have used a free scale in both axis to better display the main
features. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

c∗

•±
(c••) =

c2
••

+ 20c•• − 8 ±
√

c••(c•• − 8)3

8
(26)

c∗∗∗

•
(c••) = −

13c2
••

+
√

c••(8 − 7c••)3 − 4c•• − 8
8(c•• − 1)

(27)

or the sign of the above mentioned terms that determine the competition outcome.
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Fig. 6. Possible phase portraits of system (9) under symmetry conditions (19) as function of c•• and c•. The curve fi stands for the nullcline
f species i = 1, 2. Note that panels (iv) and (vi), and (v) and (vii) display essentially the same dynamical outcome, but the number of
nstable equilibrium points makes each of them mathematically different from the other ones. Parameter values: (i) (ĉ, c) = (0.95, 0.5), (ii)
ĉ, c) = (0.95, 1.4), (iii) (ĉ, c) = (0.95, 2.5), (iv) (ĉ, c) = (0.95, 3.25), (v) (ĉ, c) = (45, 7), (vi) (ĉ, c) = (50, 13), (vii) (ĉ, c) = (122.5, 22).

Parameter values have been chosen ad hoc to illustrate the possible nullclines configuration, and may have no ecological sense.

Interestingly, and despite the fact that solutions converge monotonically to an equilibrium point [22], we have
found 6 qualitatively different outcomes, as there are up to 7 interior equilibrium points in the positive cone. Thus,
there are new asymptotic behaviors different from those of the classical model (classical coexistence, conditional
exclusion, one species extinction) and those found when considering group defense in just one species (conditional
coexistence in favor of species 1 and global bi-stable coexistence). Namely:

• Conditional extinction of type II: E∗

i , i = 1, 2 are LAS, there exist 2 interior unstable equilibrium points and
a separatrix passing through them that define their basins of attraction, see panel (vi) in Fig. 6 (we refer to
type I if there is 1 interior unstable fixed point, as in panel (iv), Fig. 6).

• Bi-stable global coexistente (respt., tri-stable global coexistence): semi-trivial equilibrium points are both
unstable and there are 2 LAS interior equilibrium points (respt., 3 LAS interior fixed points). There exists
also an interior unstable equilibrium point (respt., 2 unstable interior fixed points) and a separatrix passing

through it that defines their basins of attraction; see panel (ii) in Fig. 6 (respt., see panel (iii) in Fig. 6).
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• Conditional coexistence: the semi-trivial equilibrium points are both stable, and there is also a LAS interior
equilibrium points. There exist 2 (type I; or 4, type II) interior unstable equilibrium points and separatrices
passing through each of them that define the basins of attraction. Coexistence or one species extinction depends
on priority effects (the initial amount of individuals of each species). See panels (v) and (vii) in Fig. 6.

t is worth noting that symmetric competition conditions preclude global extinction of one of the species, implying
hat E∗

i , i = 1, 2, cannot be GAS. We have included here type I and type II scenarios for the sake of completeness.
n the overall, these two outcomes do not really differ from each other, just in the transient dynamics and for values
lose to the origin. We leave comments and interpretations to Section 5

. Discussion and conclusions

In the overall, we have found that group defense strategy improves the chances of coexistence, mainly by
owering the inter-species competition effect with respect to intra-species pressure. This mechanism can be added
o cooperation–competition effects [55] or the time taken in interference [8] as mechanisms enhancing coexistence,
ll of them belonging to the so-called stabilizing mechanisms of coexistence [9].

In consumer-resource competition, the stronger competitor is also more “exposed” to consumers, which reduces
heir competitive strength by feeding on them. Group defense has been widely considered in this context, although
efense is against consumers and not against competitors. Consumer-resource models estate a trade-off between
esource defense (against consumer) and resource growth [14,25], meaning that species should prioritize one of
hese strategies. In contrast, such a dichotomy does not hold in interference competition, since defending against
ompetitors relaxes inter-species pressure enabling stronger growth.

Also, group defense (against consumers) may either weaken or enhance species coexistence in exploitative
ompetition [45] by deflecting consumer pressure to the other resource species. Interestingly, we have found that
roup defense does not weaken, in any case, the chance of coexistence in interference competition.

The role of group defense (against competitors) may play a key role in consumer–resource dynamics, since
nabling resource species coexistence implies sharing consumer pressure. That is, in complex community dynamics
ringing competitors to extinction may not always be the best idea. It would be of interest to explore possible
rade-offs between-group defense against competitors, group defense against consumers, and consumers’ pressure
n resources.

Empirical observations support multiple stable coexistence states [21] in species competing by interference. The
roposed mechanism in [21] relies on fast–slow coupled processes. To our knowledge, interference competition
odels that allow for multiple coexistence states have been reported in the context of slow–fast systems when

he competition models incorporate another (relatively fast) process, such as disease dynamics [44] or individual
ispersal [36], but not in a pure interference competition model, as the one presented herein.

5.1. Group defense and nullclines

Whether competing species manage to coexist or not depends on the balance between intra and inter-species
competition [42,55]; see comments after expression (10). We first analyze how group defense impacts on this
balance. Fig. 7 displays the nullcline f1 for species 1 of system (9).

The nullcline u2 = f1(u1) bounds the region R1 where species 1 has positive growth (see Fig. 7) and defines the
inimal population 2 size that prevents population 1 to keep growing. In the classical model (c1 = 0, left panel in
ig. 7) f1(u1) = (1 − u1)/c12 is a straight line with negative slope, and the smaller is the competitive strength c12,

he larger is R1. This feature is due to the fact that as c12 decreases (see (10)), intra-species competition becomes
tronger than inter-species competition. Also, regarding R1, species 1 is less tolerant to species 2 as species 1
opulation size increases, meaning that the larger is the number of individuals of species 1, the less tolerant (in
rder to keep growing) is to species 2.

However, as c1 becomes positive f1 is not a straight line anymore (center and right panels of Fig. 7) and
R1 becomes larger because group defense reduces the effect of inter-species competition on species 1. Direct
alculations yield that f1(0) = 1/c12, f ′

1(0) < 0, and there is a inflection point at u1 = 1/3. Furthermore, there

xist local extrema at 0 < û1− < û1+ < 1 for c1 > 3 (see right panel of Fig. 7).
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Fig. 7. The nullcline u′
= 0 of system (9) for increasing values of c1. Left, c1 = 0 (i.e., the classical Lotka–Volterra model (1); center,

c1 ∈ (0, 3) and right, c1 > 3.

Group defense is not fully active for 0 < c1 < 3 (center panel of Fig. 7). Namely, species 1 becomes more
tolerant to species 2 because of a relative reduction of inter-species pressure (see region R1+ in the central panel of

ig. 7). Indeed, as c1 > 3, group defense is fully active and allows species 1 to keep growing even in the presence
f a larger amount of individuals of species 2 than before (u1 < û1−) see region R1++ in the right panel of Fig. 7.
n this region, a larger number of individuals of species 1 results in tolerating even a larger number of individuals
f species 2. Thus, group defense somehow balances the relative weight of intra and inter-species competition on
pecies 1.

The time elapsed in interference was considered in [8], and the corresponding nullclines are similar to those
btained for 0 < c1 < 3. However, the nullclines founded there were strictly decreasing regardless of the time
lapsed in interference.

[6,32,37,55], on the other hand, dealt with various modifications of the classical interference competition system.
here, the shape of the nullcline of species 1 is similar to u2 = f̂1(u1) = au1(1 − u1). Thus, at low species
population size, increasing the number of individuals of species 1 results in tolerating a larger number of

ndividuals of species 2. This feature holds until the nullcline reaches its maximum, and it is reversed from
he maximum on. Note that in these works f̂1(0) = 0 crosses the origin whereas in the defense group case
f1(0) = 1/c12 > 0. Therefore, group defense is by far much convenient to species 1 than other strategies considered
n the above-mentioned works.

.2. Holling type IV competitive response in one species

We focus now on system (11). Two competition outcomes not allowed by the classical model arise: conditional
oexistence in favor of species 1 and bi-stable global coexistence. Also, and in any case, group defense has an
mpact on both transient dynamics and the long-term relative size of the competing species.

In general, group defense enhances quantitatively the species displaying it. For instance, Fig. 8 displays a global
oexistence scenario for two values of c1, and it is apparent that the number of individuals of species 1 increases
s c1 increases, and conversely for species 2

We have found that system (11) with c21 > 1 yields qualitatively the same outcomes as in the classical system.
owever, group defense plays a role in two different ways:

• When in addition 0 < c12 < 1 both the classical model and system (11) predict species 2 extinction. However,
species 2 will fade away much faster due to the group defense term.

• Besides, if also c12 > 1, both the classical model and system (11) predict species extinction due to priority
effects. In this case, the larger is c1, the wider is the basins of attraction of E∗

1 . That is to say species 1 is more
likely to survive since it can rule out species 2. Thus, there is a trade-off between competition and defense
that clearly favors coexistence, which is not always the case in exploitative competition [45].

For 0 < c21 < 1 competition outcomes may be different from those in the classical system depending on the
alue of c1 > 0. Condition 0 < c21 < 1 implies that species 1 cannot drive species 2 to extinction, but species 1
an be ruled out. At this point, any defense strategy in species 1 should be key to survive, and system (11) allows

o in two different ways:
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Fig. 8. When species coexist, group defense may decide which one is the dominant competitor. Left panel, c1 = 1.1, c2 = 0, right panel
c1 = 2.5, c2 = 0.

Fig. 9. Phase portraits of system (11). The straight blue line is the nullcline f2, the curved red line is the nullcline f1. Solid (empty, resp.)
points are LAS (unstable, resp.) equilibrium points. The black curve is the orbit of an arbitrary solution of system (11). Parameter values:
c12 = 1.11, c21 = 0.85, and c1 = 0.5, 1.1, 2 increases from the left to the right panel.

• On the one hand, if c12 > 1, the classical model predicts species 1 extinction. However, a large enough
defense coefficient c1 > c∗

1−
allows species coexistence (in particular, species 1 to survive) via a saddle–node

bifurcation (see right panel in Fig. 9). Still, E∗

2 is LAS, and species 1 survival depends on the initial values.
Species 1 will fade out (see left and central panels in Fig. 9) if defense is as weak as 0 < c1 < c∗

1−
.

• On the other hand, if 0 < c12 < 1, the classical model predicts global species coexistence via a GAS positive
equilibrium point E∗. System (11) also allows global coexistence (left or right panel in Fig. 10) as in the
classical model. Interestingly, moderate values of c1 ∈ (c∗

1−
, c∗

1+
) lead to a saddle–node bifurcation that leads

also to global coexistence but via two LAS equilibrium points E∗
±

whose basins of attraction are defined by
a separatrix through an unstable equilibrium point E∗

+
(center panel in Fig. 10).

Note that numerical experiments show that for c1 < c∗

1−
the unique GAS positive equilibrium point is closer

to the vertical axis than for c1 > c∗

1+
. Thus, as c1 increases, it pulls E∗ towards the horizontal axis, that means

the u1 (the u2, resp) component of E∗ increases (decreases, resp.) as c1 increases. This behavior, however,
is not smooth: as c1 crosses the threshold value c∗

1−
a saddle–node bifurcation takes place (center panel in

Fig. 10) resulting in the above mentioned bi-stable coexistence scenario. As a result, a region of initial values
in the phase plane will lead to E∗

+
(in favor of u1), while these initial values would have lean to E∗ (in favor

of u2) for slightly lower values of c1.

In [21], two alternative stable states have been described for a diverse variety of terrestrial and near terrestrial
ecosystems. It is suggested that periodic changes from one state to another are mediated by changes in slow
processes that suddenly trigger a fast process (that results in a response or escape from a state). We have shown
that global bi-stable coexistence may arise when one (11) or both (9) competing species exhibit Holling type
IV competitive response. An alternative explanation is that a sudden (stochastic-like) change in the number of
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H.H. Castillo-Alvino and M. Marvá Mathematics and Computers in Simulation 198 (2022) 426–445

p
c

Fig. 10. Phase portraits of system (11). The straight blue line is the nullcline f2, the curved red line is the nullcline f1. Solid (empty, resp.)
oints are LAS (unstable, resp.) equilibrium points. The black curve is the orbit of an arbitrary solution of system (11). Parameter values:
12 = 0.97, c21 = 0.6, and c1 = 1, 1.51, 4 increases from the left to the right panel.

Fig. 11. Competition outcomes of system (9) as function of competitive strengths c12, c21 for increasing values of c1 and c2 (from left to
right). The color is the same as Fig. 3 except the dark blue, pink and cyan color’s regions that represent tri-stable conditional coexistence,
the dark red region stands for bi-stable conditional coexistence region in favor species 2 and the dark-green area stands for unconditional
coexistence with three nontrivial equilibrium points are globally asymptotically stable. The figure has been computed as described at the foot
of Fig. 3, parameter values 0 < c12, c21 < 4 and (c1, c2) ∈ {(1.9, 1.5), (3.8, 4.4), (5.8, 6.4) , (15, 10)}. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)

individuals may lead the community from the basins of attraction of one of the coexistence equilibrium points to
the other one. Also, competitive abilities or species strategies may change in time, for instance, due to climate
fluctuations, which may result in a sequence of readjustments that pull the system from one coexistence scenario
to the other one (left and right panels in Fig. 10).

5.3. Group defense competitive response in both species

Surprisingly, the full analysis of the model has turned out to be beyond the scope of this work. Note that even
assuming symmetric competition, which entails serious restrictions in coefficients, has yielded a bunch of new
dynamical scenarios.

Species growth rate, competitive abilities (and, thus, the corresponding competitive strength), and group defense
coefficient may change in time due to several factor such as global change [5], evolution [4,39] or adaptive
strategies [15,34,35]. As a result, we should not consider Figs. 2 and 3 to be static objects. The regions depicted
there refer to the asymptotic behavior of the model. Thus, variations in the model coefficients taking place in the
transient time may lead the community from one region to another.

There may exist up to 9 equilibrium points in the positive cone (see Eq. (17)). We have numerically explored
and classified the possible equilibrium points of system (9). Fig. 11 displays the number of equilibrium points and
its stability in the c12 −c21 parameter plane for fixed values ci , i = 1, 2. System (9) allows for the same competition
outcomes as in the classical model, that are colored the same as in Fig. 1 and, besides, new competition outcomes

have been found:
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• Bi-stable global coexistence consisting of two interior LAS equilibria plus both semi-trivial equilibrium points
being unstable. See the light green region in Fig. 11.

• Tri-stable conditional coexistence in favor of one species consisting of two interior LAS equilibria plus one
of the semi-trivial equilibrium points being also LA. See the pink and the cyan regions in panels (iii) and (iv)
in Fig. 11.

• Tri-stable of conditional coexistence consisting of one interior LAS equilibria plus both semi-trivial equilibrium
points being also LAS. See the dark black region in Fig. 11.

• Bi-stable conditional coexistence region in favor species 1 (species 2, resp) consisting of one interior LAS
equilibria and one of the semi-trivial equilibrium points being also LAS. See the dark blue (dark red, resp)
region in Fig. 11

• Global tri-stable coexistence consisting of three nontrivial equilibrium points are LAS, while the semi-trivial
equilibrium points are unstable. See the dark-green region in the coexistence square [0, 1] × [0, 1] in panels
(i i), (i i i) and (iv) (the last one, almost invisible) in Fig. 11.

Compared to other interference competition models, the differences are not only in how likely coexistence is, but
also in the number of different scenarios are allowed by the model. Essentially, [8,37,55] allow for all the classical
outcomes along with conditional coexistence in favor of one species and conditional coexistence. In contrast, system
(9) may display all the previous scenarios and, in addition, global multi-stable coexistence scenarios.

Finally, we briefly depict future work, that will include parameterizing real populations to ascertain its real-
world applied usefulness. The interplay between group defense and disease effects (disease modified competition) in
competition models will be analyzed. Also, possible trade-offs between prey species group defense and a specialized
predator deserve being analyzed.
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Appendix A

Theorem 1. Consider system (9). Then,

1. The axes are forward invariant.
2. The solutions are bounded from above.
3. The positive cone R2

+
= (0, +∞) × (0, ∞) is forward invariant.

Proof. Statement 1 follows from the fact that any solution with initial values on one axes, say (u1(t0), u2(t0)) =

u01, 0) becomes an uncoupled system consisting of the logistic equation u′

1 = r1u1(1 − u1) and u′

2 = 0. Regarding
, any solution of equation i is bounded from above by the solutions of the logistic equation u′

i = ri ui (1 − ui ),
= 1, 2. The third item is direct consequence of 1 and 2. ■

heorem 2. Consider system (9) with ci > 0, i = 1, 2 and ri > 0, i = 1, 2. Then,

1. The trivial equilibrium point E∗

0 = (0, 0) is unstable.
2. There exist semi-trivial equilibrium points E∗

1 = (1, 0) and E∗

2 = (0, 1). Besides:

(a) E∗

i is asymptotically stable if c j i > 1, i, j = 1, 2 and i ̸= j .
∗
(b) Ei is unstable stable if c j i < 1, i, j = 1, 2 and i ̸= j .
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H.H. Castillo-Alvino and M. Marvá Mathematics and Computers in Simulation 198 (2022) 426–445

s

A

T

D
S

w

I

r
a
r

T
T
a

P
c
I

Proof. The existence of E∗

i , i = 0, 1, 2 follows from direct calculation. The stability conditions follow from a
tandard analysis of the eigenvalues of the Jacobian matrix. ■

ppendix B

heorem 3 (Specie 1 Wins). Consider system (11) with c1 > 0 and the semi-trivial equilibrium points E∗

1 and
E∗

2 . Then, for any solution with initial values in the positive cone, E∗

1 is globally asymptotically stable and E∗

2 is
unstable if c21 > 1 and 0 < c12 < 1.

Proof. Without loss of generality, we assume i = 1. Consider the nullclines (28) of system (11),

f1(u1) =
1

c12
(−c1u3

1 + c1u2
1 − u1 + 1), f2(u1) = 1 − c21u1 (28)

We look for the positive solutions of equation f1(u1) = f2(u1), that are the positive roots of the third-degree equation

P(u1) = u3
1 − u2

1 +
s
c1

u1 −
r
c1

= 0 (29)

where,

r = 1 − c12 and s = 1 − c12c21.

Applying the Sturm’s Theorem we obtain the Strum’s sequence (14) that reproduces next

Seqp = {P(u1), P ′(u1), R1(u1), R2(u1)}

irect calculations show that V (0) − V (1) (see comments after expression (14)) depends on the sign of R2(1).
olving R2(1) = 0 on c1 yields expression (15) that we reproduce for the convenience of the reader

c∗

1±
=

27r2
− 18sr − s2

±
√

(r − s)(9r − s)3

8r
(30)

here

r = 1 − c12 and s = 1 − c12c21.

t follows that (r − s)(9r − s)3 < 0 implies the existence of a real root. Besides, as f1(1) > f2(1) and f ′

1(u1) < 0,
f ′

2(u1) = −c12, f1(u1) and f2(u1) strictly decrease for u1 ∈ (0, ∞), then, this real root is in the fourth quadrant.
Thus, the configuration of the phase portrait is as in the first row of Fig. 4. Note that region II is a trapping

egion, meaning that any solution entering there will remain there. Moreover, in holds that the limit as t → ∞ of
ny solution (u1(t), u2(t)) of system (11) starting in regions II at t = t0 is E∗

1 . Also, every solution starting in either
egions I or III will eventually enter in region II, which completes the proof. ■

heorem 4 (Conditional Exclusion). Consider system (11) and assume that ci j > 1 i, j = 1, 2 and c1 > 0.
hen, there exists an equilibrium point E∗

+
that is unstable while the semi-trivial equilibrium points E∗

1 and E∗

2 are
symptotically stable, each of which has a basin of attraction defined by a separatrix passing through E∗

+
.

roof. The hypotheses in the Theorem and Descartes’s rule imply that Eq. (29) has one or three real roots. The direct
alculations show that f2(0) > f1(0) and f1(1) > f2(1); thus there exists u∗

1−
∈ [0, 1] such that f1(u∗

1−
) = f2(u∗

1−
).

n addition, d f2(u1)
du1

= −c21 < 0 implies that f2 is strictly decreasing. Besides, d f1(u1)
du1

= −
c1
c12

(3u2
+ 1) + 2 c1

c12
u < 0

for any u1 ∈ (1, ∞). Therefore, f1 is also strictly decreasing in [1, ∞), there exists a solution of Eq. (29)[1, ∞)
and the nullclines meet at the fourth quadrant. Arguing as before, it is not difficult to show that the third solution
is in (−∞, 0). Therefore, there exists a unique nontrivial equilibrium point E∗

+
in (0, 1) × (0, 1) (see panel (iii) in

Fig. 4). The proof can be completed arguing as in the proof of the previous Theorem 3.
As for the existence of the separatrix, let us recall that the Poincaré–Bendixon’s Theorem estates the possible

structure of every non-empty compact ω-limit set of an orbit which contains only finitely many fixed points. Being

the system a competitive one (sensu [22]) precludes the existence of both periodic orbits or homoclinic orbits. Note
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H.H. Castillo-Alvino and M. Marvá Mathematics and Computers in Simulation 198 (2022) 426–445

P

A

T

that E∗
+

is a saddle–node equilibrium point and the nullclines are its stable manifold, one of the branches joining
the trivial equilibrium point E∗

0 (an unstable focus) and E∗
+

. ■

Theorem 5 (Either bi-stable Conditional Coexistence or Species 1 Exclusion). Consider system (11) and assume
that c12 > 1, 0 < c21 < 1 and c1 > 0. Consider c∗

1−
as defined in (15) and the semi-trivial equilibrium points E∗

1
and E∗

2 . Then, for any solution with initial values in the positive cone:

1. Assume that c1 ∈ (c∗

1−
, ∞). Then, there exist two nontrivial equilibrium points E∗

+
and E∗ in the positive

cone. Besides, E∗

1 and E∗
+

are unstable while E∗

2 and E∗ are asymptotically stable, each of which has a
basin of attraction defined by a separatrix passing through E∗

+
.

2. Assume that c1 ∈ (0, c∗

1−
). Then, E∗

2 is globally asymptotically stable and E∗

1 is unstable.

Proof. It follows by using the ideas used in the proofs of Theorem 3 and Theorem 4. ■

Theorem 6 (Coexistence). Consider system (11) and assume that 0 < ci j < 1, i, j = 1, 2 (thus, the semi-trivial
equilibrium points E∗

1 and E∗

2 are unstable) with c1 > 0. Then, for any solution with initial values in the positive
cone:

1. There exist three equilibrium points E∗
+

, E∗
−

and E∗ in the positive cone if c1 ∈ (c∗

1−
, c∗

1+
), where c∗

1±
were

defined in (15). In such a case, exist a nontrivial equilibrium point E∗
+

unstable while E∗ and E∗
−

are locally
asymptotically stable, each of which has a basin of attraction defined by a separatrix passing through E∗

+
.

2. The equilibrium point E∗ is globally asymptotically stable if c1 ∈ (0, c∗

1−
) ∪ (c∗

1+
, ∞).

roof. It follows by using the ideas used in the proofs of Theorems 3 and 4. ■

ppendix C

heorem 7. Consider system (9) along with the symmetry conditions c1 = c2 ≡ c• and c12 = c21 ≡ c••. Consider
also the following quantities,

c∗
±

=
c2
••+20c••−8±

√
c••(c••−8)3

8

c∗∗
±

=
−3c2

••+20c••−8±

√
c••(9c••−8)(c••+8)2

8

c∗∗∗
= −

13c2
••+

√
−c••(7c••−8)3−4c••−8

8(c••−1)

(31)

1. For any 0 < c•• < 8
9 , ∀c ∈ R+, Ẽ∗ is a global attractor to the positive cone.

2. Assume now that 8
9 < c•• < 1:

(a) For any 0 < c < c∗∗
−

, Ẽ∗ is a global attractor to the positive cone.
(b) For any c∗∗

−
< c < c∗∗

+
, Ẽ∗ is a saddle while Ẽ∗

3 and Ẽ∗

4 are asymptotically stable, so that there exists
a separatrix passing through Ẽ∗ that defines the basins of attraction of Ẽ∗

3 and Ẽ∗

4 .
(c) For any c∗

+
< c < c∗∗∗, Ẽ∗

5 and Ẽ∗

6 are saddle points while Ẽ∗, Ẽ∗

3 and Ẽ∗

4 are asymptotically stable,
so that there exists a separatrix passing through Ẽ∗

5 and Ẽ∗

6 that defines the basins of attraction
of Ẽ∗, Ẽ∗

3 and Ẽ∗

4 . Besides, for any c∗∗∗ < c < ∞, Ẽ∗ is a global attractor to the positive
cone.

3. Assume now that 1 < c•• < 8:

(a) For any 0 < c < c∗∗
+

, Ẽ∗ is a saddle while the semi-trivial equilibrium points E∗

1 and E∗

2 are
asymptotically stable, so that there exists a separatrix passing through Ẽ∗ that defines the basins
of attraction of E∗ and E∗.
1 2

442
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(b) For any c∗∗
+

< c < ∞, Ẽ∗

3 and Ẽ∗

4 are saddle points while Ẽ∗, E∗

1 and E∗

2 are asymptotically stable,
so that there exists a separatrix passing through Ẽ∗

3 and Ẽ∗

4 that defines the basins of attraction of
Ẽ∗, E∗

1 and E∗

2 .

4. Assume now that c•• > 8:

(a) For any 0 < c < c∗
−

or c∗
+

< c < c∗∗
+

, Ẽ∗ is unstable while the semi-trivial equilibrium points E∗

1
and E∗

2 are asymptotically stable, so that there exists a separatrix passing through Ẽ∗ that defines the
basins of attraction of E∗

1 and E∗

2 .
(b) For any c∗∗

+
< c and c∗

+
< c, Ẽ∗

3 and Ẽ∗

4 are saddle points while Ẽ∗, E∗

1 and E∗

2 are asymptotically
stable, so that there exists a separatrix passing through Ẽ∗

3 and Ẽ∗

4 that defines the basins of attraction
of Ẽ∗, E∗

1 and E∗

2 .
(c) For any c∗∗

+
< c < c∗

+
, Ẽ∗

3 , Ẽ∗

4 , Ẽ∗

5 , Ẽ∗

6 are unstable points while Ẽ∗, E∗

1 and E∗

2 are asymptotically
stable, so that there exists a separatrix passing through Ẽ∗

3 and Ẽ∗

4 that defines the basins of attraction
of Ẽ∗, E∗

1 and E∗

2 .
(d) For any c∗

−
< c < c∗∗

+
, Ẽ∗, Ẽ∗

3 and Ẽ∗

4 are unstable while E∗

1 and E∗

2 are locally asymptotically stable,
so that there exists a separatrix passing through Ẽ∗, Ẽ∗

3 and Ẽ∗

4 that defines the basins of attraction
of E∗

1 and E∗

2 .

Proof. For the convenience of the reader, let us follow Section 4.1 and recall that the main analysis tool
is, again, the Sturm’s Theorem applied to the g(u1) and h(u1) (defined in (21) and (22)) in the polynomial
Eq. (20). We compute the number of change of signs of the Sturm’s sequence of polynomial (20) at u1 = 0, 1
by means of the Sturm’s sequences of (21) and (22) denoted by Seqg = {g(u1), g′(u1), R1(u1), R2(u1)} and
Seqh = {h(u1), h′(u1), T1(u1), T2(u1), T3(u1), T4(u1), T5(u1)}. Many of them have constant sign at u1 = 0, 1, but
R2(u1), T4(u1), T5(u1) may display different sign at u1 = 0, 1 depending on the value of c• and c••. Solving the
corresponding equations on c• yield threshold values defined by (31) (that is to say, expression (25), (26) and (27)).
Taking into account the threshold values c∗

±
, c∗∗∗, c∗∗

±
we get conditions for the existence of one, three or five real

roots as summarized in the Table 2.

1. Direct calculations show that f1(0) > f2(0), f1(1) < f2(1), then ∃ u∗

1 ∈ [0, 1], such that f1(u∗

1) = f2(u∗

1).
Note that none of the expressions in (31) are real numbers for c•• ∈ (0, 8

9 ). The stability of the equilibrium
point can be proved as in Theorem 4.

2. For any c•• ∈ ( 8
9 , 1) the discriminant of c∗∗

±
and c∗∗∗ are positive. Then,

(a) A non-trivial equilibrium point Ẽ∗ exists when c• ∈ (0, c∗∗
−

). Its global stability follows from the proof
of Theorem 4.

(b) Non-trivial equilibrium points Ẽ∗, Ẽ∗

3 and Ẽ∗

4 exist for c ∈ (c∗∗
−

, c∗∗
+

). Its stability can be assessed as in
the proof of Theorem 4. In particular, Fig. 6 illustrates that regions II, IV, V, VI and VII are a trapping
regions, also the equilibrium point Ẽ∗ is unstable while Ẽ∗

3 and Ẽ∗

4 are asymptotically stable, each of
which has a basin of attraction defined by a separatrix passing through Ẽ∗. Note that the symmetry in
the phase portrait implies that the straight u1 = u2 is invariant by the flow of system (9), in fact, it is
a separatrix for the basins of attraction for remaining non trivial equilibrium points Ẽ∗

3 and Ẽ∗

4 . Then,
Ẽ∗

3 , Ẽ∗

4 are asymptotically stable.
(c) Non-trivial equilibrium points Ẽ∗, Ẽ∗

3 , Ẽ∗

4 , Ẽ∗

5 and Ẽ∗

6 exist whenever c ∈ (c∗∗
+

, c∗∗∗). The stability can
be derived as in the above proof of 2-(b). The equilibrium point Ẽ∗

5 and Ẽ∗

6 are unstable while Ẽ∗

3 ,
Ẽ∗ and Ẽ∗

4 are asymptotically stable, each of which has a basin of attraction defined by a separatrix
passing through Ẽ∗

5 and Ẽ∗

6 .

Statements 3 and 4 can be derived as in the proof of statement 2. The existence of the nullclines follow
reasoning as in the proof of Theorem 4. ■
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