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1 Introduction 4

A key factor when modelling community dynamics consists in the way interactions 5

take place. The vast majority of the research on community models, that follow in 6

the wake of Lotka and Volterra [23], assumes that individuals are well mixed and 7

that any one of them can interact with all the rest. Interestingly, epidemic and eco- 8

epidemic models do take into account such a major feature distinguishing the type of 9

transmission [4, 21], that is closely related to the way individuals interact. Recently, 10

[1–3, 18] addressed a series of community models that implement a social structure 11

determining how populations interact with each other. Some cases of predator-prey 12

interactions of this type are instead discussed in [17]. 13

In this paper we consider interference competition between two motionless 14

populations, for which individual interaction dynamics is definitely different from 15

mobile living beings [24]. Plants, of course, do belong to this category. Sessile 16

species competition has been also reported in fungi [25], sponges [31], corals 17

[5, 12, 14], giant clams, barnacles [10] or most of bivalves [27] are other examples, 18

along with microorganism that grow up in colonies [20]. 19

H. C. Alvino (�)
Pontificia Universidad Católica “Madre y Maestra”, STI Facultad Ciencias e Ingenierías, Escuela
de Ciencias Naturales y Exactas, Santiago de los Caballeros, Republic of Dominican
e-mail: hh.castillo@ce.pucmm.edu.do

M. Marvá
Departamento de Física y Matemáticas, Universidad de Alcalá, Alcalá de Henares, Spain
e-mail: marcos.marva@uah.es

E. Venturino
Dipartimento di Matematica “Giuseppe Peano”, Università di Torino, Torino, Italy
e-mail: ezio.venturino@unito.it

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
R. P. Mondaini (ed.), Trends in Biomathematics: Stability and Oscillations in
Environmental, Social, and Biological Models,
https://doi.org/10.1007/978-3-031-12515-7_10


 885 47989
a 885 47989 a
 
mailto:hh.castillo@ce.pucmm.edu.do

 885 51863 a 885 51863
a
 
mailto:marcos.marva@uah.es

 885
55738 a 885 55738 a
 
mailto:ezio.venturino@unito.it

 -2016 61494 a -2016
61494 a
 
https://doi.org/10.1007/978-3-031-12515-7_10


H. C. Alvino et al.

We thus consider two populations that homogeneously occupy two neighboring 20

territories, but do not mix with each other, at least not significantly. Interactions 21

among the two species populations can only occur through the common boundaries 22

of the two cultures in consideration, that border each other. Note that these different 23

domains occupied by the two populations may well consist also of islands or other 24

more complicated geometrical shapes. 25

Thus, these considerations lead us to replace the classical 1–1 interactions among 26

individuals of the same species with just those with the most immediate neighbors of 27

a single individual [18]. In the model we thus must prevent that one individual may 28

compete with all other individuals of the population that are in far away locations. 29

When the model is written in terms of explicit carrying capacities, the dynamics 30

of interference competition is driven by the balance between intra- and interspecific 31

competition [24, 32], or, if the model is formulated with emerging carrying capaci- 32

ties, by competitive strengths [6, 15, 26]. We prefer the latter approach, see [16]. In 33

any case, the early theory of competition [11, 19, 30] understands coexistence as the 34

result of the common interplay of inter- and intraspecific interactions. Specifically 35

coexistence is obtained when intraspecific competition limits species density more 36

strongly than interspecific competition. In the present model competition is by far 37

different than in the classical model, since 1–1 interactions among all individuals 38

are precluded. In particular, both intra- and interspecific competition are relaxed. 39

Therefore, we expect competition outcomes to be different than in the classical 40

model as in the recent extensions [8, 9]. Indeed, interactions seem to be milder in 41

the model we present herein, so that we expect to find that species are more likely 42

to coexist. 43

From a mathematical point of view, the model we present belongs to the general 44

class of competitive systems in the positive cone, see [13] and the references therein. 45

This fact precludes the existence periodic solutions and guarantees that solutions 46

converge to an equilibrium point. 47

Our main results are the following. When a sessile population competes with a 48

mobile population, all the competitive outcomes of the classical model are possible. 49

Besides, conditional bi-stable coexistence in favor of the sessile population is 50

possible, meaning that both a semi-trivial equilibrium and a coexistence equilibrium 51

are (locally) asymptotically stable. Thus, whether the sessile population wins or both 52

populations coexist depends on the system’s initial conditions, i.e. the initial amount 53

of individuals of each population. 54

When both competing populations are sessile only species exclusion, with 55

outcome determined just by the system’s initial conditions, or conditional tri-stable 56

coexistence, i.e. coexistence, are possible, as it was already shown in [22]. 57

The manuscript is organized as follows: in the next section we compare the 58

classical logistic single population evolution with the corresponding one of a 59

motionless population. In Sect. 3, we set the features of non-mobile populations 60

for which the interactions occur only at the boundary of their respective domains 61

into a mathematical formulation. Subsequently, we analyze the competition among 62

mobile and motionless populations in Sect. 4. The interactions of two motionless 63
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populations are instead analysed in Sect. 5. Finally, we discuss the results achieved 64

for the various cases in Sect. 6. 65

2 The Single Population Case 66

The single population case has been briefly examined also in [18], as a motivation 67

for further changes in the formulation of herd behavior models. Here however we 68

focus on a population that does not move, which therefore has its own specific 69

features, distinguishing it from the more commonly considered mobile populations. 70

The starting point for a single population is represented by the classical logistic 71

(or Verhulst) model, namely 72

x′ = r̂x − ax2, (1)

for which the the population settles at the equilibrium 73

xc = r̂

a
. (2)

For one single plant living in a plantation, therefore surrounded just by other 74

plants of the same species, because the interactions occur only with possibly a 75

fraction b ≤ 1 of the closest neighbors, the model becomes instead: 76

x′ = r̂x − bax
√

x. (3)

Equation (3) is a modification of the well known logistic growth that takes into 77

account that sessile living beings stand still and interact only with their most 78

immediate neighbors. Thus, a given individual competes with the nearby ones, that 79

we assume are located at the boundary layer of its “vital space", that is, a circle area 80

around the individual. Assuming that individuals are homogeneously distributed, 81

the boundary of each individual’s vital space is proportional to the boundary of 82

the territory occupied by this species, i.e., proportional to
√

x. Clearly, of the two 83

possible equilibria of (3), the origin is unstable while the population thrives at level 84

x∗ = r̂2

b2a2
. (4)

Thus, qualitatively, the two models (1) and (3) behave in the same way. However, 85

recalling that b ≤ 1, whether a single plant living in a wood or plantation is better off 86

than a corresponding animal individual living amidst his own consimilars, depends 87

on the ratio between its net reproduction rate and the intraspecific competition rate. 88

If the former exceeds the latter, the level at which the vegetable species settles is 89

certainly higher than the corresponding animal population. 90
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3 The Competing Sessile Populations Model 91

The departure model in this case is the classical Lotka-Volterra competition model 92

the with emergent carrying capacities [6, 15, 26] rather than explicit carrying 93

capacities [23, 32]: 94

{

x′
1 =r1x1 − a11x

2
1 − a12x1x2

x′
2 =r2x2 − a22x

2
2 − a21x1x2

(5)

where xi and ri > 0 stand for the amount of individuals and the intrinsic growth 95

rate of species i = 1, 2, respectively. Coefficients aij > 0 account for intra- (i = j ) 96

and interspecific (i �= j ) competition, for i, j = 1, 2. 97

The modeling of sessile populations is rather different from the classical 98

interacting populations of animals that can move around. As assumed in other 99

investigations concerning herds of herbivores and their predators, [1, 2, 17] or 100

interference competition [22], we assume here that interactions among different 101

species, uniformly located in specific territories, occur through their common 102

boundaries, as stated above. They are assumed to be smooth, motivating the use 103

of the square root in the interaction terms. 104

Thus, we denote by x1 and x2 the densities of the populations, i.e., the number of 105

individuals per surface unit, occupying an area S. Thus the species of the population 106

i found in the periphery or neighborhood of their environment are proportional to 107

the perimeter of the patch where the culture is located, whose length depends on
√

S. 108

They are therefore proportional in number to the square root of the density, i.e. to 109√
xi, i = 1, 2. In fact, different shapes could be accommodated by taking a different 110

exponent, other than one half, in the model formulation. However, in part based 111

also on the results of [7] for which no fundamentally different results arise, and for 112

simplicity sake, we confine ourselves to the assumption of a smooth boundary. This, 113

as mentioned, entails the use of the exponent one half in the model formulation. We 114

next examine in detail the intra- and inter- specific interaction terms: 115

• Inter-specific interactions take place on the boundary of each species domain. In 116

view of the previous discussion, as individuals are assumed to be homogeneously 117

distributed, the interaction between species xi and xj takes the following form: 118

− diaij

√
xi

√
xj , (6)

where the minus sign denotes interactions harming the population i under 119

consideration, aij stands for the competition interaction coefficient of species 120

j on population i; 1 ≥ di ≥ 0 is a constant that scales competition to the 121

fraction of the common perimeter. If species do not interact, i.e. there is no 122

common boundary, then di = 0. Therefore, diaij , i �= j stands for interspecific 123

competition and includes information on the fraction of the boundary where 124
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competition takes place, so that its interpretation is slightly different from the 125

interaction coefficients of the classical model. In general di �= dj . 126

• For intraspecific dynamics, we must include the growth rate and possibly 127

intraspecific competition and therefore use replicas of (3): 128

x′
i = r̂ixi − biaiixi

√
xi, (7)

where r̂i stands for the net intrinsic growth rate, aii is the intraspecific compe- 129

tition rate. In this context, bi in (7) stands for the proportion between the local 130

boundary and the perimeter occupied by the entire population, so that 1 ≥ bi ≥ 0. 131

It is assumed to be the same for all individuals of the same species. 132

Merging (7) and (6) yields the competing sessile populations model 133

{

x′
1 = r̂1x1 − b1a11x1

√
x1 − d1a12

√
x1

√
x2,

x′
2 = r̂2x2 − b2a22x2

√
x2 − d2a21

√
x1

√
x2.

(8)

Theorem 3.1 The positive solutions of system (8) are bounded from above. 134

Proof Note that 135

x′
i = r̂ixi − biaiixi

√
xi − diaij

√
xj

√
xi < r̂ixi − aiixi

√
xi < 0

for xi >
(

r/aij

)2. In particular, in the positive cone define a suitable box B 136

with one corner located at the origin and the opposite one at the point V = 137
(

(r1/d1a12)
2 , (r2/d2a21)

2). The situation thus corresponds to the flow entering into 138

B. � 139

Remark 3.1 System (8) is a competitive system (sensu [13]) in the positive cone 140

R
2+ := (0,+∞) × (0,+∞), in view of the fact that 141

∂

∂xj

(

r̂ixi − biaiixi

√
xi − diaij

√
xj

√
xi

)

< 0, j �= i, i, j = 1, 2,

and the flow of the system belongs to class C1
(

R
2+
)

. Thus, Theorem 3.1 along with 142

[13] imply that all the positive solutions of system (8) converge to an equilibrium 143

point. 144

Remark 3.2 Note that as pointed out in [29], the right hand side of (8) does not 145

satisfy the Lipschitz condition, with a consequent loss of uniqueness of the solution 146

trajectories on the coordinate axes. Thus we need special care in treating vanishing 147

populations when we change the variables of the system (8) to obtain the auxiliary 148

system in order to eliminate the singularity. Therefore, to study the trivial and semi- 149
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trivial equilibrium points, we have to turn to the original formulations (8), compare 150

the approach of [3]. 151

Hence, we will study the trivial and semi-trivial equilibria directly using model 152

(8). The trivial and semi-trivial equilibria are the following points: 153

E0 = (0, 0), E1 =
(

(

r1

b1a11

)2

, 0

)

, E2 =
(

0,

(

r2

b2a22

)2
)

(9)

Note also that there are square root terms in system (8), so that the stability of 154

the trivial and semi-trivial equilibrium points (9) cannot be assessed using the 155

Jacobian matrix which, in turn, works when dealing with coexistence equilibria. 156

However, square roots make the Jacobian matrix to be involved; we next introduce 157

an equivalent singularity-free system to overcome such a problem. 158

4 Mobile and Sessile Populations Interactions 159

We consider here the interactions between a mobile population competing with a 160

non-mobile one. Thus the system is a combination of both (5) and (7), giving: 161

{

x′
1 =r1x1 − a11x

2
1 − a12x1x2,

x′
2 =r2x2 − a22b2x2

√
x2 − a21x1x2.

(10)

Proceeding as for system (8), it is easy to realize that the trajectories of (10) are 162

bounded from above. To analyze the existence of equilibrium points and the long 163

term behavior of the solutions of (10), we rewrite it in the following more convenient 164

form: 165

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

x′
1 =r1x1

(

1 − a11

r1
x1 − a12

r1
x2

)

,

x′
2 =r2x2

(

1 − a22

r2
b2

√
x2 − a21

r2
x1

)

.

(11)

We rescale the above system with a special change of variables and parameters, 166

namely wi = aii

ri
xi , cij = aij rj

ajj ri
, to obtain 167

⎧

⎪

⎨

⎪

⎩

w′
1 =r1w1 (1 − w1 − c12w2) ,

w′
2 =r2w2

(

1 − b2

√

a22

r2

√
w2 − c21w1

)

.
(12)
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A further rescaling in system (12) given by ŵ2 = a22
r2

w2, ĉ12 = r2
a22

c12, yields the 168

so-called special auxiliary system: 169

⎧

⎨

⎩

w′
1 =r1w1 (1 − w1 − ĉ12ŵ2) ,

w′
2 =r2ŵ2

(

1 − b2

√

ŵ2 − c21w1

)

.
(13)

Let us recall that Theorem 3.1, as well as remarks 3.1 and 3.2 hold mutatis 170

mutandi. 171

4.1 Equilibria 172

The trivial and semi-trivial equilibria of system (13) are: 173

E0 = (0, 0) E1 = (1, 0) and E2 =
(

0,
1

b2
2

)

(14)

We consider the nullclines of system (13), that are given by 174

ŵ2 = f1(w1) = 1 − w1

ĉ12
, ŵ2 = f2(w1) = (c21w1 − 1)2

b2
2

.

The coexistence equilibria are denoted by E±
3 = (w±

1 , f1(w
±
1 )). They are given 175

by the intersection of the nullclines, in this case a curve and a straight line. These 176

solutions can be obtained from the roots of the following quadratic equation: 177

Psc(w) = 1

ĉ12b
2
2

[

−ĉ12c
2
21w

2 + (2̂c12c21 − b2
2)w + (̂c12 − b2

2)
]

.

Thus 178

w1 =
2̂c12c21 − b2

2 ± b2

√

4̂c12c21(c21 − 1) + b2
2

2̂c12c
2
21

. (15)

Imposing that the discriminant of expression (15) 179

D := 4̂c12c21(c21 − 1) + b2
2 (16)

is nonnegative, we find the real roots in the positive cone. The following Lemma 4.1 180

and Theorem 4.1 summarize these conditions. 181
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Fig. 1 Competition outcomes of system (10) in the ĉ12 − ĉ21 parameter space as function of the
competitive strengths as defined in Eq. (13). Species 1 (resp. 2) refers to the sessile (resp. mobile)
population

Lemma 4.1 Consider the function 182

c21 = ψb2 (̂c12) :=
ĉ12 +

√

ĉ12(̂c12 − b2
2)

2̂c12
, (17)

then, ψb2 is an unimodal function such that: 183

(1) its domain is the set
{

x ∈ R
+ | 1 ≤ x < ∞}

184

(2) c∗
21 = ψb2(1) = 1+

√

1−b2
2

2 and lim
ĉ12→+∞ ψb2 (̂c12) = 1 185

Proof It follows from direct calculations (Fig. 1). � 186

AQ1
Whether there is none, one or two equilibrium points is determined by the sign of 187

the discriminant (16) of (15) and the quantities defined in the previous Lemma 4.1. 188

Theorem 4.1 Consider the system (13) and the function (17). Recalling (16) we 189

find 190

1. System (13) has no equilibrium points in the positive cone if either 191

(a) D < 0, see the middle right panel in Fig. 2. 192

(b) Both 1/c21 < 1 and 1/̂c12 > 1/b2
2 hold, see top left panel in Fig. 2. 193

Alternatively we can require ĉ12 < 1 and c21 > 1. 194
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Fig. 2 Possible phase portraits of system (13). The horizontal (resp. vertical) axis refers to the
sessile (resp. mobile) population. The curve f1 (resp. f2) stands for the nullcline of the sessile
(resp. mobile) population. Solid points represent locally asymptotically stable equilibrium points
while empty points represent unstable equilibria

2. System (13) possesses a single equilibrium point in the positive cone (apart from 195

the degenerated case D = 0) if either 196
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(a) Both 1/̂c12 < 1/b2
2 and 1/c21 < 1 hold, see top right panel in Fig. 2. An 197

alternative formulation of the above inequalities is ĉ12 > 1 and c21 > 1. 198

(b) Both 1/̂c12 > 1/b2
2 and 1/c21 > 1. An alternative formulation of the above 199

inequalities is ĉ12 < 1 and c21 < 1. 200

3. System (13) has two equilibrium points in the positive cone if ĉ12 > 1 and 201

ψb2 (̂c12) < c21 < 1 hold, see the bottom panel of Fig. 2. 202

Proof It follows from direct calculations on (15) and (16) and geometrical consid- 203

erations on the intersection of f1 and f2 with the axes. � 204

4.2 Stability 205

We focus now on the stability of the existing equilibrium points. 206

Theorem 4.2 Consider system (13), assuming that r1 > 0 and r2 > 0. Then, 207

1. The origin is always unstable. 208

2. Assume now ĉ12 > 1 and c21 > 1. Then by condition 2.(a) of Theorem 4.1, there 209

exists a single coexistence equilibrium point E+
3 , that is unstable. There exists a 210

separatrix line connecting the origin with E+
3 that defines the basins of attraction 211

of E1 and E2. 212

3. E1 is globally asymptotically stable if and only if 0 < ĉ12 < 1 and c21 > 1. 213

4. E−
3 is globally asymptotically stable if and only if 0 < ĉ12 < 1 and 0 < c21 < 1. 214

5. Finally, assume now 0 < c21 < 1 and ĉ12 > 1. Then, by the condition 2.(b) of 215

Theorem 4.1, 216

(a) E+
3 and E2 are locally asymptotically stable while Ec− is unstable. There 217

exist a separatrix connecting the origin with Ec− that defines the basins of 218

attraction of E2 and E+
3 , if and only if ĉ12 > 1 and ψb2 (̂c12) < c21 < 1. 219

(b) E2 is globally asymptotically stable if and only if 0 < c21 < ψb2 (̂c12) and 220

ĉ12 > 1. 221

Proof Let us consider the Jacobian matrix of (10) 222

JF (w1, ŵ2) :=
(

r1(1 − w2 − ĉ12w2) −r1ĉ12w1

−r1c21ŵ2 r2(1 − b2
√

ŵ2 − c21w1) − 1
2 r2b2

√
ŵ2

)

We analyze the characteristic equation and apply the Routh-Hurwitz criterion to the 223

equilibrium points for the various cases of the statement of the theorem: 224

1. It is easy to see that in the system (13), w′
i > 0 for w1, ŵ2 ∼ 0. 225

2. The statement holds because the eigenvalues of JF (E1) are λ1 = −r1, λ2 = 226

r2(1 − c21). Therefore, E−
3 is a saddle and E2 and E1 are locally asymptotically 227
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stable; in such case, there exists a separatrix line through both E−
3 and the origin 228

that defines the basins of attraction of E1 and E2. 229

3. Direct calculations yield the eigenvalues of JF (E2), λ1 = −r2(1 − 3
2b2), λ2 = 230

r1(1 − ĉ12). The statement implies that E2 is stable while E1 is unstable. Also 231

theorem 4.1 shows that no equilibrium points exist in the positive cone, and the 232

flow of the system makes E2 globally asymptotically stable. 233

4. This statement follows by a standard analysis of the flow of the system. 234

5. We focus first in assessing the stability in case of two coexistence equilibrium 235

points. This scenario in the system dynamics may arise, when coefficients 236

vary, essentially in two different ways. On one hand, when D changes from 237

being negative to positive. On the other hand, already there exits a single 238

coexistence equilibrium point and the x2-nullcline f2 crosses one of the semi- 239

trivial equilibrium points in such a way that a second one appears. The dynamical 240

scenario is the same, no matter how it arises. 241

Let us rewrite the Jacobian matrix in a more convenient form. System (13) 242

is of the form w′
i = wifi(wi, wj ), so that at any coexistence equilibrium point 243

E = (E1, E2) it follows that f1(E) = 0 = f2(E). Thus: 244

JF (E) :=
( −r1E1 −r1ĉ12E1

−r2c21E2 − 1
2 r2b2

√
E2

)

(18)

From expression (15) for D = 0, the characteristic polynomial of (18) at the 245

equilibrium point arising when f1 and f2 collide is 246

λ2 +
(

b2
2(c21r2 − 2r1) + 4̂c12c21r1

4̂c12c
2
21

)

λ. (19)

Thus, one eigenvalue is λ1 = 0 and the other one, λ2, because of the hypotheses 247

of this statement, is negative; in particular, both eigenvalues are simple. Thus, the 248

eigenvalues are continuous under small perturbations of the parameters involved 249

in expression (18). As E−
3 and E+

3 appear, λ2 keeps being negative in the 250

corresponding Jacobian matrices while λ1 becomes negative for JF (E−
3 ) and 251

positive for JF (E+
3 ). This is shown by a standard analysis of the system flow 252

after the bifurcation takes place. 253

The second statement of 5. can be proved as 4. 254� 255

5 Two Sessile Populations Interactions 256

System (8) can be rewritten in a more convenient form introducing new variables 257

and rescaling coefficients by setting 258
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xi = z2
i , ri = r̂i

2
, cii = biaii , cij = diaij

2
, i, j = 1, 2. (20)

This yields the so-called auxiliary system: 259

{

z′
1 =r1z1 − c11z

2
1 − c12z2

z′
2 =r2z2 − c22z

2
2 − c21z1

(21)

It is apparent that the non-negative semi-axes are not invariant for the flow of system 260

(21), so that this system does not help in assessing the stability of the trivial and 261

semi-trivial equilibrium points. 262

As before we address first the existence of equilibrium points and then analyze 263

their stability. 264

5.1 Equilibria 265

As mentioned earlier the trivial and semi-trivial equilibria of system (8) are given 266

by (9). As for the coexistence equilibria, we consider the nullclines of the auxiliary 267

system (21) corresponding to system (8), given by 268

z2 = f1(z1) = z1
r1 − c11z1

c12
, z1 = f2(z2) = z2

r2 − c22z2

c21
.

The nullclines cross each other at the origin and their curvature and location imply 269

that they meet up to three times or none on the positive cone, see Fig. 3, the 270

discussion below and the discussion and conclusion Sect. 6. 271

However, system (8) may exhibit two additional coexistence states in the positive 272

cone. Substituting the second equation into the first one we obtain a fourth-degree 273

equation: 274

Qc(z1) = 1

c2
12

z1Pc(z1) = 0, (22)

where Qc(z1) = f2(f1(z1)) and 275

Pc(z1) = c22c
2
11z

3
1 − 2c22c11r1z

2
1 + (c11c12r2 + c22r

2
1 )z1 + c12(c12c21 − r1r2).

The geometry of the phase portrait implies that the coexistence equilibrium lies in 276

the box with the origin and (r1/c1, r2/c2) as opposite vertices. Therefore, we use 277

Sturm’s Theorem to account for the number of positive roots of equation Pc(z1) = 278

0. Let us recall that the Sturm’s sequence of equation Pc(z1) = 0 is given by 279
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Fig. 3 Possible phase portrait of the corresponding auxiliary competition model (21). The
horizontal (resp. vertical) axis refers to the sessile (resp. mobile) population. The curve f1 (resp.
f2) stands for the nullcline of the sessile (resp. mobile) population. Solid points are locally
asymptotically stable equilibria while non solid points are unstable equilibria. Left panel: for
the parameter values r1 = 0.8, r2 = 0.6, c12 = 1.2, c21 = 0.95, c11 = 0.47, c22 = 0.74
condition (26) holds. Central panel: the parameter values r1 = 1, r2 = 1, c12 = 1.51, c21 = 0.52,
c11 = 0.66, c22 = 1.24 fulfill conditions (27) and (28). Thus, the system exhibits the competitive
exclusion principle, as for the classical competition model. Right panel: this scenario represents the
tri-stable scenario. It is obtained for the parameter values r1 = 1, r2 = 1, c12 = 0.28, c21 = 0.13,
c11 = 0.47, c22 = 0.74. In this case either one of the population could outcompete the other one, or
both may coexist. In any case, the ultimate outcome of the system is determined just by the initial
values

Seqc(z1) = {

Pc(z1), P
′
c(z1), R1(z1), R2(z1)

}

,

where the second term is its derivative of Pc(z1), and the remaining terms 280

Ri(z1), i = 1, 2, are the remainders of the Euclidean divisions: 281

R1(z1) = −rem(Pc(z1), P
′(z1)), R2(z1) = −rem(P ′(z1), R1(z1)).

Then, evaluating each term of the Seqc at the ends of interval [0, r1/c11] we get 282

the number of positive roots of Pc(z1) = 0 as the number of changes of sign in 283

Seqc(0) minus the number of change of signs in Seqc(
r1
c11

). Thus, the actual Sturm’s 284

sequence is calculated on Pc(z1) instead of on Qc(z1). Direct calculations lead to 285
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P ′
c(z1) = 3c2

11c22z
2
1 − 4c11c22r1z1 + c11c12r2 + c22r

2
1 (23)

286

R1(z1) := −
(

2r2c11c12

3
− 2c22r

2
1

9

)

z1 − 9c11c
2
12c21 − 7c11c12r1r2 + 2c22r

3
1

9c1
(24)

287

R2(z1) := − 9c11c
2
12

4(3c11c12r2 − c22r
2
1 )2

[4c2
11c12r

3
2 + 27c11c

2
12c22c

2
21 (25)

−18c11c12c22c21r1r2 − c11c22r
2
1 r2

2 + 4c2
22c21r

3
1 ]

Theorem 5.1 System (8) has no equilibrium points in the positive cone if 288

c12c21 − r1r2 > 0 (26)

Proof Consider the Sturm’s sequences Seq(0) 289

Pc(0) = c12 (c12c21 − r1r2) , P ′
c(0) = c1c12r2 + c22r

2
1 ,

R1(0) = −1

9

(

9c11c
2
12c21 − 7c11c12r1r2 + 2c22r

3
1

c11

)

and R2(0) is given by (25). On the other hand, Seq(r1/c11) consists of 290

Pc

(

r1

c11

)

= c2
12c21, P ′

c

(

r1

c11

)

= r2c11c12,

R1

(

r1

c11

)

= −c12(9c12c21 − r1r2)

9

and R2(r1/c11) is, again, given by (25), since it does not depend on z1. Rearranging 291

terms 292

R2(0) = −9c11c
2
12

4(3c11c12r2 − c22r
2
1 )2

[4
(

c2
11c12r

3
2 + c2

22c21r
3
1

)

+c11c22(27c2
12c

2
21 − 18c12c21r1r2 − r2

1 r2
2 )].

Note that the sign of R2(0) = R2(r1/c11) does not matter, since it is the 293

same for Seq(0) and Seq(r1/c11). Therefore, gathering signs yield Seq(0) = 294
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{+,+,−, sign(R2(0))} and Seq(r1/c11) = {+,+,−, sign(R2(0))}, which con- 295

cludes the proof. � 296

Assume now that condition (26) fails. Solving Eq. (22) under the assumption that 297

c12c21 − r1r2 = 0 yields two complex roots along with z1 = 0 as unique real root 298

with multiplicity 2. Recall that an equilibrium point in the third quadrant exists when 299

(26) holds. This equilibrium collides with the origin when c12c21 − r1r2 = 0 and 300

appears in the positive cone as c12c21 − r1r2 becomes negative. Besides, from the 301

analysis of the Sturm’s sequence for c12c21 − r1r2 < 0 at least one, and up to three, 302

positive coexistence equilibrium points exist. 303

Criteria leading to each outcome can be stated assessing conditions that control 304

the change of sign of the terms of the Sturm’s sequence. Determining general 305

conditions is a hard task, since the terms of Seq(0) and Seq(r1/c11) depend on 306

up to 6 parameters. In any case, we equate to zero each term with undetermined 307

sign of the Sturm’s sequence and solve each expression for one parameter to obtain 308

conditions on the sign of each term. Solving the equations for ci (resp. cij ) yield 309

conditions for the exclusion or conditional tri-stability that depend on the so-called 310

handling time (resp., on the competition strength) of each species. 311

Theorem 5.2 Consider system (8) and assume that 312

c12c21 − r1r2 < 0 (27)

Then, 313

1. Assume that 314

9 <
r1r2

c12c21
(28)

and consider the straight lines 315

c±
22(c11) = 1

8c21r
3
1

c11

[

18c12c21r1r2 − 27c2
12c

2
21 + r2

1 r2
2 (29)

±
√

(c12c21 − r1r2)(9c12c21 − r1r2)3
]

in the c11 − c22 parameter space, arising by setting R2(0) = 0, see (25). These 316

lines define a sector region in the positive cone, see Fig. 4. Then, 317

(a) The slope of c2 = c±
2 (c11) is positive. 318

(b) If (c11, c22) lies in between c2 = c±
2 (c11) three nontrivial equilibrium points 319

Ec±, E3 in the positive cone exist. Ordered by its first component, Ec− < 320

Ec
3 < Ec+. 321

(c) If (c11, c22) does not lie in between c2 = c±
2 (c11) then there exists a single 322

nontrivial equilibrium point E3 in the positive cone. 323
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Fig. 4 Species competition outcomes in the c11 − c22 parameter space, as function of the
intraspecific competition ci , i, j = 1, 2. The straight lines c∗

2±(c11) show the thresholds values
separating the regions where one or three coexistence equilibria exist in the positive cone. Namely,
there exist three coexistence equilibria region consists of the (c11, c22) such that c∗

22−(c11) < c22 <

c∗
22+(c11) (green colored area). Outside it, just one coexistence equilibrium is possible. The figure

is generated with the parameter values c12 = 0.5, c21 = 0.07, ri = ki = 1, i = 1, 2

2. Further, if condition 324

9 >
r1r2

c12c21
(30)

holds, then there exists a single nontrivial equilibrium point E3 in the positive 325

cone. If condition (30) is an equality, c±
2 collide in a single straight line. 326

Proof The equation R2(0) = 0 is a second order equation in c22 of the form 327

−a(a2c
2
22 +a1c22 +a0) = 0. Solving it and rearranging terms we obtain expression 328

(29). Note that condition (28), which, in particular, entails (27), ensures that the 329

straight lines (29) are well defined, in the sense that the slopes are not complex but 330

real numbers. 331

Note that a0 and a2 are positive; therefore, we need 332

a1 = 27c2
12c

2
21 − 18c12c21r1r2 − c2

12c
2
21

to be negative so that by solving R2(0) = 0 in terms of c22 two positive roots are 333

obtained. Rearranging terms, a1 is equivalent to 334

a1 = −(27c12c21(c12c21 − r1r2) + r1r2(9c12c21 − r1r2))
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therefore, conditions (27) and (28) imply that a1 > 0, which proves 1.(a). 335

Let us recall that conditions (27) and (28) imply that Seq(0) = {−,+,−, ?} 336

and Seq(r1/c11) = {+,+, ?, ?}, so that the only way of having three equilibrium 337

points is that R2(0) > 0 and R1(c11/r1) > 0. Direct calculations show that the latter 338

condition follows from (28) while the former holds for values of c11 and c22 that are 339

between the straight lines c22 = c±
2 (c11). This completes the proof of 1.(b). 340

The remaining statements follow in a similar way and the details are omitted. � 341

In addition, solving the equations for cij (respectively ci) yields conditions for 342

exclusion or conditional tristability that depend on the so-called on the competition 343

strength of each species (respectively the handling time). Recall that system (8) has 344

no equilibrium points in the positive cone, independently of the parameter cij or ci , 345

in view of theorem 5.1. 346

Theorem 5.3 Consider system (8) and assume that condition (27) holds. Then, 347

1. Assume further that condition (28) is fulfilled and 348

2

9

c22r
2
1

c11r2
< c12 <

1

4

c22r
2
1

c11r2
:= c̄12, (31)

Consider also the curves 349

c±
21(c12) = 1

27

c22r1(9c11r2c12 − 2c22r
2
1 ) ± 2

√

c22(c22r
2
1 − 3c11r2c12)3

c11c22c
2
12

(32)
in the c12−c21 parameter space, obtained by setting R2(0) to zero, see expression 350

(25). These curves define a region in the positive cone, shown in Fig. 5. Then, 351

(a) If (c12, c21) lies in between c21 = c±
21(c12) then there exist three nontrivial 352

equilibrium points Ec±, E3 in the positive cone, ordered by their first 353

component, Ec− < Ec
3 < Ec+. 354

(b) If (c12, c21) does not lie in between c21 = c±
21(c12) then there exists a single 355

nontrivial equilibrium point E3 in the positive cone. 356

2. Besides, if condition (30) holds, then there exists a single nontrivial equilibrium 357

point E3 in the positive cone. If condition c12 = 1
3

c22r
2
1

c11r2
, c±

21 coalesce into a single 358

curve. The outcome is also a single positive coexistence equilibrium point. 359

Proof Let us consider R2(0) = 0, again it is a second order equation of the form 360

−b(b2c
2
21 + b1c21 + b0) = 0. Solving such an equation in c21 and arranging terms 361

yields expression (32). Note that the rightmost condition (31) ensures that the curves 362

(32) are well defined, i.e. the expression under the square root is positive. Coefficient 363

b2 is positive, so that equation R2(0) = 0 possesses two positive roots if 364

b1 < 0 ⇔ c12 >
2c22r

2
1

9c11r2
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Fig. 5 Species competition outcomes as function of the intra-species competition parameter cij ,
i, j = 1, 2. The region in green delimited by c21 = c+

21(c12), the axes and c12 = c̄12 stands for the
region in the parameter space where 3 positive (non trivial) equilibrium points arise. In the outer
region (in purple) just one coexistence equilibrium is possible. The figure has been generated with
the parameter values c12 = 0.5, c21 = 0.07, ri = ki = 1, i = 1, 2

and 365

b0 > 0 ⇔ c12 <
c22r

2
1

4c11r2 .

Summing up, c12 fulfilling (31) ensures i) that c±
21 are well defined and ii) R2(0) 366

is positive if c−
21(c12) < c21 < c+

21(c12). Therefore, Seq(0) = {−,+, ?,+} and 367

Seq(r1/c11) = {+,+,+,+}, so that the only way of having three equilibrium 368

points is that R1(0) < 0, that is equivalent to: 369

c21 >
r1(7c11r2c12 − 2c22r

2
1 )

9c11c
2
12

:= c̃21(c12).

Direct calculations show that c̃21(c12) crosses the c12 axis further away than c−
21(c12) 370

does and that c̃21(c12) < c−
21(c12). Therefore, c−

21(c12) < c21 < c+
21(c12) implies 371

c̃21(c12) < c21, which completes the proof of 1.(b). 372

The remaining statement follows in the same way and is therefore omitted. � 373
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5.2 Stability 374

We gather in the following theorem the stability conditions of the equilibrium points 375

found in the previous section. 376

Theorem 5.4 Consider system (8), assuming that r1 > 0 and r2 > 0. Then, 377

1. The origin is always unstable and the semi-trivial equilibrium points are always 378

locally asymptotically stable. 379

2. Assume that condition (26), c12c21−r1r2 > 0, holds, so that there are no positive 380

equilibrium points. Then there is a separarix through the origin (which is a 381

saddle) delimiting the basins of attraction of the semi-trivial equilibrium points. 382

Thus, one of the species goes extinct depending on the system initial conditions. 383

3. Assume now that conditions (30) hold. Then there exists a single coexistence 384

equilibrium point Ec
3, that is unstable. There exists a separatrix line passing 385

through Ec
3 and the origin that defines the basins of attraction of E1 and E2. 386

4. Finally, if conditions (28) and (31) hold, there exist three nontrivial equilibrium 387

points: Ec
3 is locally asymptotically stable while Ec± are unstable. There exist 388

separatrices passing through the origin and each of Ec± that define a region were 389

Ec
3 is located and define the basis of attraction of E1, E2 and Ec

3. 390

Proof 391

1. Keeping in mind remark 3.2, consider the nullclines of system (8), given by 392

f1 : x2 = 1

a2
12

[

r1
√

x1 − b1a11x1
]2

,

f2 : x1 = 1

a2
21

[

r2
√

x2 − b2a22x2
]2

,

(33)

Condition (26) imply that the nullclines (33) divide the positive cone in three 393

different regions, as displayed in Fig. 6. Region I is characterized for x′
1 < 0 394

and x′
2 > 0, and the flow points inward on the boundary of region I, so that 395

it is a trapping region and solutions starting within the closure of region I are 396

attracted by E2, so that the origin is unstable. Proceeding as before, we find 397

that region III is a trapping region and any solution starting within the closure 398

of region III is attracted by E1. It is immediate that E1 and E2 are locally 399

asymptotically stable just by considering the flow of the system on the straight 400

lines given by
{

(z1, v2z2), z1 ≥ v2z1

}

and
{

(v1z1, z2), z2 ≥ v1z2

}

respectively, 401

where (v1zk
, v2zk

) are the coordinates of the vertex of the nullcline of zk , k = 1, 2. 402

2. Consider a perfectly symmetric competition, i.e. c12 = c21, c11 = c22 and r1 = 403

r2. Then, from the geometry of the phase portrait, the straight line z2 = z1 is 404

the stable manifold, i.e. a forward invariant curve such that solutions starting on 405

this line converge to the origin. Besides, it divides the positive cone on the basins 406

of attraction of the semi-trivial equilibrium points. Furthermore, because of the 407

continuity of the flow with respect to the system parameter and the uniqueness 408
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Fig. 6 The phase portrait for the competing populations. The figure is generated with the
parameter values a12 = 0.84, a21 = 1.10, a11 = 0.99, a22 = 0.75, ri = 1, i = 1, 2

of solutions on the positive cone, this invariant manifold changes continuously 409

as the model parameters change as long as no positive equilibrium points appear 410

in the positive cone. 411

3. This proof is an adaptation of the one of Theorem 4.2, item 2.a in [8]. Consider, 412

as before, the perfectly symmetric case. Then the geometry of the phase plane 413

ensures that E3 is a saddle-node and that the straight line z2 = z1 is its stable 414

manifold that defines the basins of attraction of the semi-trivial equilibrium 415

points. As argued before, this setting remains qualitatively the same as the 416

coefficients of the system vary continuously whenever no additional equilibrium 417

points show up in the positive cone. 418

4. This statement follows mutatis mutandi from the previous one (see also the proof 419

of Theorem 4.2, statement 2.a in [8]). 420� 421

6 Discussion and Conclusions 422

We now interpret the mathematical results from a biological point of view, com- 423

paring the new model with the classical one. A first and important remark concerns 424

both intra- and interspecific competition coefficients. They are expressed in the same 425

units, 1/(time× individuals) for intra- and interspecific competition, respectively, 426

in the classical model. However the units in the sessile populations model are: 427

1/(time × individuals) and 1/time. If populations are counted as number of 428

individuals, there is no difference, as all these coefficients become frequencies. 429

However, if the populations represent animals or plants, for instance, a possibility 430
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is to count them using biomass. In such case there is a difference in the units. But 431

even if units are different, nullclines can be qualitatively compared, as well as the 432

structure of each model possible outcome. 433

The main results follow. 434

1. When a mobile and a sessile population compete, the dynamical outcomes are 435

those of the classical model plus a bi-stable conditional coexistence. 436

2. Instead, when two sessile populations compete, the competition outcomes are 437

reduced to competitive exclusion due to the system’s initial conditions and tri- 438

stable conditional coexistence. 439

Thus, sessility precludes global outcomes and puts the focus not only on the compet- 440

itive abilities of each species, but also on the initial amount of individuals. Namely, 441

there is neither global coexistence, for which species would coexist regardless of 442

the initial amount of individuals of each one of them, nor global extinction where 443

a “super-competitor” would rule out the other species independently of the initial 444

composition of the community. 445

This is an interesting feature from the management point of view, since pertur- 446

bations, whether human-driven or not, may drastically change the system outcome. 447

We next analyze in deeper detail each one of these features. 448

6.1 Sessile vs Mobile Species Competition 449

Theorem 4.2 concerns a mobile population 1 competing with a sessile population 450

2. It follows from this Theorem that all the dynamical outcomes of the classical 451

model (5) are allowed and, in addition, bi-stable conditional coexistence in favor of 452

the sessile population arises, except for a bi-stable conditional coexistence region 453

that reduces the range in which the sessile species outcompetes the mobile one. The 454

last dynamical outcome has already been observed in [8, 9] when modifying the 455

classical competition model with Holling type II and IV competitive responses. Also 456

in [1, 22] when considering social herd-induced behavior in one of the competing 457

species. 458

The structure of the regions in the parameter space ĉ12 − c21 leading to each 459

competitive outcome, see Fig. 2, is equivalent to the one of the classical model 460

except for the bi-stable conditional coexistence in favor of the sessile species region. 461

This region is set in the region where the classical model predicts that the mobile 462

species would be excluded by the sessile species, and borders the species exclusion 463

due to the system’s initial conditions and (partially) the global coexistence regions, 464

see Fig. 1. Therefore, in such a region the sessile species 2 cannot be eliminated by 465

the mobile species 1. On the contrary, the mobile species has the chance of surviving 466

via coexistence provided that the initial values are appropriate, see the bottom panel 467

of Fig. 2. Thus, coexistence is more likely to occur than in the classical model. 468

Interestingly, consider interspecific competition coefficients (̂c12, c21) values 469

belonging to the region where the sessile species 2 wins. Fixing ĉ12, as the effect of 470
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the mobile species 1 on the sessile species 2, we find that c21 < φb2 (̂c12) increases 471

and crosses the curve c21 = φb2 (̂c12), the mobile species 1 has the chance of 472

surviving via coexistence with the sessile species. A further increment such that 473

c21 > 1 makes the effect of the mobile species 1 on the sessile species 2 strong 474

enough so that in the end only one species survives. 475

We summarize the results as follows: 476

• From a certain point of view, being sessile is not a serious handicap for a sessile 477

species that faces competiton with a mobile population. This means that the 478

sessile population will survive for the same parameter value ranges as for the 479

classical model, although for the parameters in the dark-blue region in Fig. 2 the 480

sessile species will share the environment with the mobile population. 481

• In contrast, the mobile population is more likely to survive when facing a sessile 482

population than a mobile one. This fact is reflected by the above mentioned 483

dark blue region in Fig. 1 that corresponds to the dynamical scenario depicted 484

in the bottom panel of Fig. 2. Note that neither such a region nor nullclines 485

configurations do exist in the classical model, when both populations are mobile. 486

487

6.2 The Intra- and Interspecific Competition Effect for 488

Nullclines 489

We first analyze qualitatively the nullclines of system (8) versus the nullclines of 490

the classical competition model (5). Let us note an important fact concerning both 491

intra- and interspecific competition coefficients. These coefficients are somewhat 492

non comparable since they are expressed in different units, in the classical/sessile 493

population models. Therefore, even if we plot both nullclines on the same axes, as 494

in Fig. 7, we do not know how these parameters vary together. Keeping this in mind, 495

we focus on the x1 nullclines given by 496

x2 = f1(x1) = 1

a12
(̂r1 − a11x1) x2 = ̂f1(x1) = x1

d2
1 â2

12

(̂r1 − b1â11
√

x1)
2

(34)
As mentioned earlier the nullcline of species 1 defines the values of population 497

size of species 2 that allow species 1 to thrive. For instance, the f1 nullcline of the 498

classical model is a straight line with negative slope, see Fig. 7, blue dotted straight 499

line, which means that the larger x1 is, the less tolerant to the presence of x2 it is. In 500

other words, it means that x1 continues growing only if x2 decreases. 501

Figure 7 represents the possible relative positions of the x1 nullcline in the 502

classical and sessile populations models. 503

A first claim is that at low x1 population size the sessile model is highly 504

tolerant to an increase of the number of individuals for both species 1 and species 505

2. This feature, which is at odds with the classical model, can be explained by 506
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considering the peculiarities of the sessile model. Indeed, interactions take place 507

at the boundary of either the vital surroundings of each individual (intraspecific 508

case) or the region occupied by each population (interspecific case). On one hand, 509

at low population size intraspecific competition does not play a major role as the 510

population grows, since individuals only interact with the nearby ones and there 511

are only a few of them. At the same time, interspecific interactions take place only 512

at the boundary of the area occupied by species 1. Thus, population growth is the 513

main driver of population dynamics at low densities. This trend is maintained at 514

low densities, while ̂f1 is increasing. Direct calculations yield that the maximum of 515

x̂2 := ̂f1(̂x1) = 1

42

r4
1

b2
1a

2
11a

2
12

is reached at x̂1 := 1

4

(

r1

b1a11

)2

. 516

A second claim is that from x̂1 onwards the nullcline decreases, meaning that if 517

x1 increases slightly, so that intraspecific competition pressure increases, species 1 518

can keep growing only if species 2 reduces the interspecific competition pressure. 519

That is, the trend is similar to that of the classical model, 520

A third feature is that nullclines ̂f1 and f1 may not cross the horizontal axis at 521

the same point. Indeed, the crossing points can be ordered in any way, as shown in 522

Fig. 7. 523

Finally, note that both nullclines can meet essentially in four different ways, as 524

shown in Fig. 7. Let us give an interpretation for instance to panel (A1). In the region 525

Fig. 7 The nullclines x′
1 = 0 of systems (8) and classical model (5)
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below ̂f1 (above f1) x1 increases (decreases) in both models. On the contrary, in 526

the region between ̂f1 and f1 species 1 would keep growing if represented by the 527

classical model but would decrease if represented by the sessile populations model. 528

Note that the maximum of ̂f1 can be below (panel (A1)) or above (panel (A2)) 529

f1. 530

6.3 The Intra- and Interspecific Interaction and Coexistence 531

Equilibria 532

Finally, we examine competition outcomes taking into account intra- and inter- 533

specific competition, that yield conditions for species exclusion or conditional 534

tri-stability due to the system’s initial conditions. 535

We may let either the intraspecific competition parameters cii vary for fixed 536

values of the interspecific competition parameters cij or the other way around. Note 537

that coefficient cii is a conglomerate of different factors that include intraspecific 538

interaction aii and bi , the relation between the perimeter of both the “vital space” 539

around each individual and the perimeter of the area occupied by the whole 540

population. 541

6.4 Varying Intra- Specific Competition Coefficients for Fixed 542

Values of Interspecific Competition Coefficients 543

Theorem 5.2 indicates that under conditions (27) and (28) two possible outcomes 544

are possible: either both species can coexist via tri-stable conditional coexistence or 545

one of them goes extinct via the system’s initial conditions. 546

In particular, with (c11, c22) lying between c22 = c±
22(c11), namely the straight 547

lines defined in (29), there is tri-stable coexistence. Thus, consider fixed values of 548

cij and ri fulfilling the hypotheses of Theorem 5.2. Then, for each fixed value c∗
2: 549

• There is species coexistence via conditional tri-stability for c11 ∈ (c−
11, c+

11) 550

where c∗
22 = c+

22(c
−
11) and c∗

22 = c−
22(c

+
11). 551

• There is one species exclusion due to the system’s initial conditions if c11 /∈ 552

(c−
11, c+

11). 553

Everything works symmetrically if c11 is fixed and c22 varies. We may conclude 554

that for each value of cii coexistence is possible for moderate values of cjj , i �= j . 555

However, either low or large enough values of cii or cjj would break coexistence. 556

Consistently with the classical model, numerical experiments show that the basin 557

of attraction of E1 is larger than the basin of attraction of E2 for c11 < c−
11. 558

The result is reversed as c11 > c+
11. This feature strongly suggests that the trade- 559
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Fig. 8 Competition outcomes of system (8) as function of the interspecific competitive interaction
c12, c21 for a fixed value of c11 and increasing values of c22. The figure is based analytic the
expression or numerical calculations depending on each respective case and has been edited to
improve it. Numerically fixed values of the parameters: r1 = 7.5, r2 = 8 c11 = 0.9 and of
c22 = 0.3, 1.1, 2.75, 3.3, and 16.7

off between intra- and interspecific competition forces works differently in sessile 560

populations and in mobile populations. 561

6.5 Inter-Specific Competition 562

We fix now cii > 0 for i = 1, 2 and assume that condition (31) in Theorem 5.3 563

holds. Then, in a similar way as in the previous paragraph, there are conditions on 564

the model coefficients that lead either to coexistence via conditional tri-stability or 565

to species exclusion due to the system’s initial conditions . In contrast, the curves 566

defining the combination of interspecific competition coefficients leading to each 567

outcome are nor straight lines and define a closed region on the positive cone, 568

see Fig. 8. Inside such a region there is conditional coexistence while outside the 569

competitive exclusion principle rules the system’s outcome. Note that the shape of 570

such a region changes as the other parameters change (in this case c22 changes as 571

shown in the caption of Fig. 8). Note that the tri-stability region starts dropping 572

towards the axis c12 as c22 increases. 573

Fixing cii and varying cij , this viewpoint is consistent with the classical model, 574

meaning that a pair (c12, c21) close to the horizontal c12-axis, i.e., c12 > c21, makes 575

the basin of attraction of E2 larger than the one of E1 and conversely. 576
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Similarly, when we fix cii , moderate values of cij seem to promote species 577

coexistence. 578
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