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Abstract

This thesis must be placed somewhere in mathematical biology. We deal with
two time scale systems and mathematical results achieved herein concern extend-
ing previous results in approximate aggregation methods.

In Nature, many phenomenon are the result of the concurrence of several
processes which may evolve, or not, within similar time scales. Considering sys-
tems coupling two processes evolving at different time scales yields more detailed
but also more complicated models than those models including a single process.
Under certain conditions, taking advantage of the difference between these time
scales allow us to derive an aggregated (less dimensional) system. Approximate
aggregation techniques not only describe how to perform such a reduction, but
also which dynamical information about the original system can be retrieved from
the study of the aggregated system.

The main objective of this thesis is extend previous results in the approxi-
mate aggregation of nonlinear discrete dynamical systems and nonautonomous
ordinary differential equation systems. These results are applied to de study of
different two time scales population models. We assume, without lost of gener-
ality, that the state variables vector represents an structured population.

In chapter 1 we deal with two time scale nonlinear discrete systems. The most
general results in approximate aggregation for this kind of systems hold under
general hypothesis which are, in practice, difficult to be checked. To the best of
our knowledge, applications consider general C1 functions representing the slow
process while regular (constant) stochastic matrices are used to describe the fast
process. Our results enhance the class of suitable functions for describing the
fast process, in particular, allowing nonlinear terms.

In section 1.2 we assume that fast dynamics is conservative of the total popu-
lation size y = ‖X‖1. We consider a regular stochastic matrix whose entries are
C1 function of y (which depends on the state variables) standing for the fast pro-
cess. Then, we show that the corresponding two time scales system is susceptible
of being approximately aggregated. This assumption means that the behavior
of the population at the fast time scale depends on the current total population
size. We apply this result to the study of different population models coupling
demographic and migratory processes which take place at different time scales.
An analysis of these models, exchanging the role of slow and fast dynamics,
completes the section. The reduction process gives rise to new interpretations of
well known discrete models, including some Allee effect scenarios.

2



In section 1.3 we let the state variables to be partially coupled at the fast
time scale. Namely, the evolution within the fast time scale of a group of state
variables depends on the current state of the rest of the state variables. The idea
is conveyed as follows. Let us group the state variables in two groups. The evolu-
tion of each group at the fast time scale is driven by a regular stochastic matrix,
such that the entries of the matrix governing the evolution of the second group
of variables are C2 function of the variables of the first block. We show that the
corresponding two time scales system is also susceptible of being approximately
aggregated. We apply this settings to a host-parasitoid community inhabiting a
chain of patches. Movements between patches are considered to be faster than
host-parasitoid interactions. Parasitoid movements depend on host densities at
each patch in such a way that parasitoids avoid those patches with low host
densities. We found that the complete model can exhibit asymptotically stable
equilibrium points while in absence of migrations the contrary was expected.

In chapter 2 we deal with two time scales nonautonomous ordinary differential
equation systems. Our results are based on a theorem due to F.C. Hoppensteadt
concerning singular perturbations of two time scales systems on the infinite in-
terval. This theorem states conditions allowing the study of certain dynamical
properties of nonautonomous two time scale systems analyzing auxiliary systems
which are simpler that the original system. This theorem is a general one. As a
counterpart, it holds under restrictive and difficult to check hypotheses. These
requirements are regularity conditions concerning those functions involved in the
system and stability conditions for the solutions of the auxiliary systems.

Our results show, roughly, that these regularity conditions hold when con-
sidering periodic systems (section 2.2) or asymptotically autonomous systems
(section 2.3). Most important, we show that in these cases, the stability condi-
tions can be restated in terms of adequate variational problems, which simplifies
drastically the study of the complete system through the auxiliary ones. We
apply these results to different population models.

We consider periodic spatially distributed populations in a patchy heteroge-
neous environment and displacements between patches are assumed to be faster
than local interactions. In a first application we analyze a periodic Lotka-Volterra
predator-prey type model with refuge for prey and predator interference. The last
feature has been proven to be relevant when fitting models to real data. We ob-
tain conditions for coexistence and predator exclusion in terms of certain ”vital”
parameters derived from the study of the aggregated model. In a second appli-
cation we consider a spatially distributed periodic multi strain epidemic model.
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We are able to define reproduction numbers and invasion reproduction num-
bers of the spatially distributed nonautonomous model through the aggregated
system which are coherent with those defined for non spatially distributed mod-
els. Comparing these reproduction numbers with their non spatially distributed
counterparts, we showed that adequate fast migration rates entail persistence
or eradication of epidemic strains in regions where in absence of migrations the
contrary was expected.

Finally, we study an asymptotically autonomous eco-epidemiologic model.
We consider a Lotka-Volterra predator-prey model as a slow process. This com-
munity system is coupled with a SIR epidemic model following the frequency-
dependent transmission law affecting predators. We show that predator (prey)
population size is larger (smaller) in the free disease state than in the endemic
disease scenario. In this case, population sizes depends on epidemic parameter
values. Then, epidemics are a suitable mechanism for controlling predator and
prey community population size.

This thesis has been partially supported by the following research projects:

• Poblaciones estructuradas y heterogeneidad espacial: métodos de reducción
y aplicaciones.
Referencia: MTM2008-06462-C02-01. Ministerio de Ciencia e Innovación.

• Escalas en modelos de dinámica de poblaciones.
Referencia: MTM2005-00423. Ministerio de Educación y Ciencia.
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Notation.

N The set of natural numbers.
R The set of real numbers.
Rn The set of real vectors with n entries.
RN

+ The non-negative cone{
(x1, · · · , xN) ∈ RN ; xi ≥ 0, ∀i

}
.

I Identity matrix of appropriate dimension.
In Identity matrix of dimension n.
σ(A) spectrum of matrix A.
ρ(A) spectral radius of matrix A.
Ck(X1; X2) Set of functions mapping X1 in X2 with

continuous k-fold partial derivatives.
‖ · ‖ Norm of the object between bars.
Mn×k(A) Set of matrices with n rows and k columns and

entries belonging to A.
Mn(A) Set of square matrices of dimension n and

entries belonging to A.
diag(B1, ...,Bq) block diagonal matrix being B1, · · · ,Bq the blocks.
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Introduction.

This thesis must be placed somewhere in mathematical biology. We deal with
two time scale systems and mathematical results achieved herein concern extend-
ing previous results in approximate aggregation methods.

In applied disciplines there is a continuous feedback between theoretical and
applied results. As it happens with problems coming from Physics, many times
the study of concrete biological problems motivates developing general mathe-
matical results. Conversely, abstract mathematical theories specialize in easy-to-
use tools accessible for non mathematician applied scientists remaining, neverthe-
less, valid for very general classes of systems. In applied mathematics applications
can be as important as the mathematical tools supporting them.

We deal with systems of difference equation and systems of nonautonomous
ordinary differential equation. In both cases we consider two time scales systems.
Even if these systems are of different nature, considering time scales confers them
common characteristics. In the sequel, we provide with a biological framework
for the thesis and its translation to mathematical language. A summary of
approximate aggregation philosophy and a schema of the organization of the
thesis complete this introduction.

Hierarchy, time scales and approximate aggregation in
ecology.

In ecology, it is usual to consider different organization levels: from cells up to
ecosystems, passing through tissues, organs, individuals, populations or commu-
nities. This consideration provides scientists with a hierarchy to classify natural
processes according with. Entities belonging to each organization level interact
among them. In addition, there are vertical interactions as well, meaning that
these organization levels are not sealed. Whatever happen in one of them has

3



Introduction.

an effect on other levels.

Hierarchy theory provides a conceptual framework of how processes and com-
ponents of an ecological system interrelate and how they can be ordered [59], [91].
Once we have got knowledge on each single process, scientists focus on how these
processes interact. Each organization level consists of interacting entities with
their own dynamics evolving within its own characteristic time scale. Those en-
tities of a given level with strong or fast interactions can be grouped giving rise
to the entities at next level. Mathematically, the process of up-scaling consists
in deriving global variables and their dynamics from the lower level based on the
existence of different time scales. In other words, from a mathematical point of
view, a model including processes belonging to different organization levels can
be seen as a system with different time scales.

In addition, getting knowledge of each single process related with each level
is, without doubt, of great interest. Usually, a first attempt for doing it con-
sist in considering non structured models, which are the simplest ones. These
models consider homogeneous populations and are constricted to studying the
evolution of the total population size. In many cases non structured models do
not describe accurately the dynamics of the population because do not consider
heterogeneity. Namely, individuals are assumed to be identical, which is far from
realistic [23]. Thus, improving the model requires structuring the population into
different classes according to the characteristics of the study.

Summing up, the aim of being as realistic as possible makes considering
structured populations and time scales which yields more detailed but compli-
cated models. However, sometimes we can take advantage of the existence of
two different time scales to reduce the dimension of the corresponding system.
Under certain hypothesis, assuming that the dynamics of the fast process attains
certain asymptotically stable state, an aggregated (less dimensional) system can
be built. The reduction process is included in the so-called approximate ag-
gregation of variables methods [6] which consist of describing the dynamics of
a complex system involving many coupled variables through the dynamics of
a reduced system, the aggregated system, formulated in terms of a few global
variables. Aggregation methods study the relationship between a large class of
two-time scales complex systems and their corresponding aggregated or reduced
counterparts. The aim of aggregation methods is twofold. On the one hand
they construct the reduced systems that summarize the dynamics of the complex
ones, thus simplifying their analytical study. On the other hand, these techniques
look at the relationship in the opposite sense, the complex system serves as ex-
planation of the simple form of the aggregated one.

4



Time scales and its applications

A natural question arises then: how coherent both the initial and the reduced
system are? When the behavior of the original and the aggregated dynamics is
the same, it is said that the system is perfectly aggregated [54]. Perfect aggre-
gation holds under very restrictive conditions. Weaker hypotheses yield different
(but approximated) dynamics on the reduced system [55], [5]. Then, approxi-
mate aggregation techniques study which dynamical information of the general
system can be recovered from the study of the reduced system. In other words,
aggregation techniques state conditions assuring that certain asymptotic behav-
iors of the aggregated system entail that of the original system.

Approximate aggregation is a label collecting different type of techniques
sharing the ideas previously stated. In fact, aggregation techniques deal with
both discrete and continuous dynamical systems. Moreover, regarding continu-
ous systems, aggregation techniques specializes for autonomous ordinary differ-
ential equations, delayed differential equations, partial differential equations [6]
and, as we will see, for nonautonomous ordinary differential equations.

Time scales and its applications.

Far from being a trick, considering models with time scales cames across from
simple observation of Nature. This idea is related with classifying processes in
different organization levels and, of course, it is not exclusive of Biology. For
instance, there are recently published results in business [106], automatic con-
trol [97], [63], manufacturing flow control models [33], hydrology [4], marine
geology [26], agronomic engineering [105], signal processing [37], [14], electri-
cal engineering [57], crystallography [80], ferromagnetism [47], astronomy [94],
physics of plasma [53] and small-world network physics [75].

In population dynamics non-structured models are the simplest ones. These
models consider homogeneous populations and are constricted to studying the
evolution of the total population size. In particular, individuals are considered to
be identical. In many cases this assumption leads to so simple models which do
not describe accurately the dynamics of the population.

For instance, survival or reproductive skills are individual characteristics, and
may depend on age, size, sex,. . . [23]. Thus, populations can be structured
into different classes depending on the characteristic of study so that individuals
belong to a given class. However, even individuals belonging to the same class
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Introduction.

may evolve in a different way depending on the environmental conditions of the
habitat they are living in. Therefore, spatial distribution is another feature to be
taken into account when describing a population.

The underlying idea is that of considering structured populations in order
to retain its heterogeneity; we may arrange the corresponding classes attend-
ing to individual features or spatial distribution. Structured populations within
the context of hierarchy theory and its organization levels constitutes a natural
framework for considering two time scale models. According with Auger et.al. [6]
a cornerstone concept in approximate aggregation is that of emergence. That is,
approximate aggregation is not merely a reduction of the dimension of the initial
model, but it also provides information about the influence of fast processes at
the global level in the long term, which is called emergence (see [11] and [6] for
further details on functional emergence and dynamical emergence).

The following paragraphs are aimed to gain an insight on different situations
where approximate aggregation has proven to work, rather than providing with
an exhaustive list of items. Some of these applications have motivated parts of
this thesis:

• Populations structured by space. It is reasonable assuming that indi-
viduals may evolve different under different environmental conditions. A
population can be structured according to its spatial distribution by consid-
ering fragmented (patchy) habitats such that those parameters describing
the environmental conditions in each patch take different values. For in-
stance, those parameters describing demographic processes (see [73] or, as
well, [72] in section 1.3), competition between species (see [71]), predator-
prey interactions (see [78], see also [67] in section 2.2), epidemic processes
(see [66] in section 2.2) have different values in each patch, which yields
heterogeneity. Considering individual displacements between these patches
to be faster than local interactions gives rise to two time scales systems.

• Populations structured by an individual features. A typical example is
that of demographic processes on age structured populations. Individuals
are classified according to reproductive skills (non reproductive and repro-
ductive). Considering demography to be faster than migrations yields two
time scale systems, as those presented in [86] or [68] in section 1.2. On
the other hand, in eco-epidemic models, as those presented in [9] and [35],
an epidemic process affecting predators evolves faster than predator-prey
interactions. In this case predator population has been structured accord-
ing to being susceptible, infected or recovered individual in the epidemic
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Organization of the thesis

process; in section 2.3 we present an eco-epidemic model too.

From another point of view, it is of great interest studying the effect of
individual behavior on the whole population. Sometimes it is reasonable
assuming that individual actions evolve much faster than collective ones,
as the later are, somehow, the sum of the formers. This considerations
allow one to build up two time scales systems. As a matter of fact, sev-
eral works study the effect of individual behavioral plasticity on the whole
population by considering hawk-dove tactic (or hawk-dove-bully tactics) as
fast dynamics in front of slow demographic processes [83], [8], [24] or [79].

Organization of the thesis.

This thesis deals with the approximate aggregation of some nonlinear two time
scales systems and its application in the study of different population models.

The systems treated can be classified into two large categories that are in-
cluded respectively in chapters 1 and 2. Chapter 1 deals with discrete dynamical
systems and chapter 2 is devoted to nonautonomous systems of ordinary differ-
ential equations. The methods presented in each of these chapters require quite
different approaches, so we are providing specific detailed introductions at the
beginning of each of them in contrast with the short and general one done so
far.

Both chapters share a common structure. They include in a first section,
named introduction, a detailed review of the approximated aggregation methods
previously developed for the corresponding type of system, either discrete or
ordinary differential equations. This introduction motivates and presents the
study undertaken in subsequent sections where we first develop new theoretical
results that are illustrated through various applications in relevant population
dynamics models encompassing host-parasitoid, predator-prey, epidemiology and
eco-epidemiology models with different population structures.

The bibliography and the list of publications complete the thesis.
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Chapter 1

Contributions to the
approximate aggregation of two
time scales discrete dynamical
systems.

1.1 Introduction.

Discrete systems are prescribed when the state variables change according to a
fixed step in the independent variable (typically, time) instead of varying contin-
uously. Perhaps the most known example is that of bank interest. It is easy to
find examples in Nature. For instance, many species reproduce once or twice per
year. Other species perform seasonal migrations, and so on.

We consider systems coupling two processes, each of them evolving at a dif-
ferent time scale. A first decision consist in choosing the time unit of the system.
As usual, each of the processes is modeled by means of a map applied on the
state variables. It is a problem to approximate the effect of one of the maps
over a projection interval which is different from its own. As we will see, this
consideration yields two different families of systems, both of them susceptible
of being approximately aggregated under the appropriate hypotheses.

Concerning discrete systems, perfect aggregation of variables was initially
suggested by Leontief in the 50’s to John Ching-Han Fei [31] in the framework
of input-output problems, in Economy. Later on, Simon and Ando [95] carried on
with perfect aggregation, applying those ideas in automatic control theory and
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Chapter 1 Discrete dynamical systems.
1.1 Introduction

economy. In these works, the authors considered models with only one process
and thus, it did not make sense distinguishing time scales.

First attempts to approximate aggregating a discrete system dealt with linear
models and were done by Sánchez, Bravo de la Parra and Auger. In [19], the
authors considered the fast time unit for the time unit of the system, while in [84]
the slow time unit was considered. They built up the classes of systems corre-
sponding to each case. Subsequently, they stated the first properties and results
concerning the approximate aggregation of two time scales discrete dynamical
systems. The following subsections are devoted to a brief oversight of these two
modalities.

Before proceeding, let us state a general notation which will be kept all along
this chapter. According with the biological framework stated in the introduction
we consider, without lost of generality, that state variables stand for a population.
Hierarchic organization levels and heterogeneity lead to populations structured
into groups and subgroups. In other words, we study the evolution of this popula-
tion considering two processes directly related to this structure. Thus, population
vector state at time n is given by

(1.1) Xn = (x1
n, · · · ,xqn),

where xin = (xi1n · · · , xiNin ) defines the population in group i = 1, · · · , q and xijn
is the size of subgroup j in group i at time n. Let N = N1 + · · · + Nq be the
total number of subgroups, so that Xn ∈ ΩN ⊂ RN

+ for each n ≥ 0, where ΩN

is an open, bounded, connected and non-empty subset of RN
+ .

Regarding the two processes involved in two time scales models, general
functions F, S ∈ C1(ΩN ; ΩN) stand for the fast and the slow dynamics. We will
use capital calligraphic letters instead of regular ones whenever the corresponding
functions specialize in a dot-matrix form, that is, F (X) := FX.

Systems built upon the fast time unit.

The construction and approximate aggregation of two time scales linear discrete
systems based on the fast time scale was carried on in [19], [21] and [84] while
a particular nonlinear case was studied in [20].

In the sequel, we describe the construction of such kind of systems and
summarize the main results achieved.
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Systems built upon the fast time unit.

Linear case. We follow, essentially, [84], where fast and slow dynamics were
assumed to be linear.

Namely, the slow dynamics, for a certain fixed projection interval, was repre-
sented by a nonnegative projection matrix S. Matrix S was divided into blocks
Sij ∈ MNi×Nj(R), with i, j = 1, · · · , q, so that there is a correspondence be-
tween matrix blocks and population subgroups

(1.2) S =

 S11 · · · S1q

· · · · · · · · ·
Sq1 · · · Sqq


namely matrix Sij stands for the transference of individuals of the different sub-
groups of group j to the different subgroups of group i. The kind of matrices
used is known in the population dynamics literature as Leftkovich matrices. The
fast dynamics is internal, conservative of the total number of individuals and
with an asymptotically stable distribution among the subgroups for every group
i = 1, · · · , q. For each group i = 1, · · · , q, the fast dynamics is represented by
a nonegative projection matrix Fi of dimensions Ni ×Ni. Thus, matrix

(1.3) F = diag(F1, · · · ,Fq)

stands for the fast dynamics of the whole population.
It is considered as projection interval of the system that associated to matrix

F . Therefore, it is needed to approximate the effect of matrix S over a projection
interval much shorter than its own. For that purpose, matrix

Sε = εS + (1− ε)IN ,

it is defined, where ε is a positive number close to zero reflecting the ratio of
slow to fast time scale and IN is the identity matrix. One may see matrix Sε as
a matrix which makes S act in a proportion ε, with ε as small as wanted, and
letting variables unchanged in proportion 1− ε. Namely, matrices S and Sε are
related by the following property:

Proposition 1.1.1 If S has a dominant eigenvalue λ with an associated eigen-
vector v, then ελ + (1 − ε) is the strictly dominant eigenvalue of Sε and v is
also its associated eigenvector.

From a mathematical point of view, proposition 1.1.1 reflects the fact that the
asymptotic dynamics of S has been approximately translated to the characteristic
time scale of F . In fact, proposition 1.1.1 implies that the dynamics associated
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Chapter 1 Discrete dynamical systems.
1.1 Introduction

to S and Sε have the same asymptotically stable stage distribution. Besides, Sε
has a much greater growth rate than S because ελ+ (1− ε) = 1 + ε(λ− 1) is
closer to 1 than λ. With this idea in mind, the fast and the slow processes are
combined to build up the complete system as follows

(1.4) Xε
n+1 = SεFXε

n = FXε
n + ε (S − IN)FXε

n

which is an ε-perturbation of system

(1.5) Xn+1 = FXn.

In order to reduce the system some assumptions on the fast dynamics must be
maken. When considering two time scales systems, in order to perform the ap-
proximate aggregation, it is assumed that the fast dynamics acts instantaneously
in front of the slower process attaining certain stable equilibrium state. This
idea is conveyed assuming that the fast dynamics is conservative of certain vari-
ables called global or aggregated variables for the state variables and with an
asymptotically stable distribution. In former works, global variables were known
as macro-variables (this terminology comes from Economics).

In the linear case presented here, these assumptions on the fast dynamics are
met if block matrices Fi, i = 1, · · · , q are primitive with dominant eigenvector
λ = 1 and left and right eigenvectors ui and vi, respectively, are chosen so that
ui > 0, vi > 0 and uTi vi = 1. Then, we have that

(1.6) lim
k→∞
Fki = viu

T
i = F̄i.

In particular, this is met if Fi is a regular stochastic matrix for every i = 1, · · · , q.
In this case ui can be taken to be a vector with all its entries equal to 1 and then
vi is the stationary probability distribution associated to Fi. Assuming that fast
dynamics has already attained its asymptotic state allows one to approximate Fk
in system (1.4) by

F̄ := diag(F̄1, · · · , F̄q).
This yields the auxiliary system

(1.7) Xε
n+1 = SεF̄Xε

n,

which is a sort of bridge between the general and the aggregated system. From
equation (1.6) it is straightforward that

(1.8) F̄ = EG

12



Systems built upon the fast time unit.

where G = diag(uT1 , · · · ,uTq ) and E = diag(v1, · · · ,vq). Defining the global
variables

Y ε
n = GXε

n

we get the aggregated system for these global variables, which reads as follows

(1.9) Y ε
n+1 = G Sε EY ε

n = S̄ε Y ε
n

where S̄ε = εGSE + (1− ε)I = ε S̄ + (1− ε)I. Note that this procedure yields
an approximation that allows one to reduce a system with N variables to a new
system with q variables. In most practical applications, q will be much smaller
than N .

Relationship between systems (1.4), (1.7) and (1.9) are proved in [19] as-
suming that S̄ is primitive.

Proposition 1.1.2 Under the previous conditions, let λ > 0 be the strictly
dominant eigenvalue of S̄, and w and v its associated left and right eigenvectors.
Then, it follows that

1. the strictly dominant eigenvalue of matrix S̄ε is ελ+ (1− ε) and w and v
are its associated left and right eigenvectors.

2. the strictly dominant eigenvalue of matrix SεF̄ is also ελ + (1 − ε), and
GTw and Ev are its associated left and right eigenvectors.

3. the strictly dominant eigenvalue of matrix SεF is of the form

ελ+ (1− ε) +O(ε2)

and the corresponding left and right eigenvectors are of the form

GTw +O(ε2) and Ev +O(ε2),

respectively.

So, the elements describing the asymptotic behavior of the complete system (1.4)
can be approximated by the corresponding elements if the aggregated system
(1.9)

In [20] and [21] a system with linear fast dynamics and a general nonlinear
slow dynamics is reduced by means of a center manifold theorem.
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Chapter 1 Discrete dynamical systems.
1.1 Introduction

1.1.1 Systems built upon the slow time unit.

It is not always possible to choose as time unit the fast one. It may happen
that during a fast time unit, the action of the slow process is not describable.
Nevertheless, the converse holds. Whenever the system is expressed in the slow
time unit the existence of a faster process can be represented by letting it act
a number k of times between times n and n + 1. The larger is k, the more
different are the time scales. Let us note Xk,n+1 the vector of state variables at
time n+ 1 considering that the fast process has acted k times between times n
and n+ 1.

In the sequel, we will examine results found in the literature concerning the
approximate aggregation of linear and nonlinear two time scales systems based
upon the slow time unit.

Linear autonomous systems.

The construction of a two time scales linear system performed in [84] and [86]
yields system:

(1.10) Xk,n+1 = S FkXk,n; Xk,0 = X0,

where matrices S and F are those in (1.2) and (1.3) respectively, the super-index
k stands for the k-fold power of F and reflects the ratio between time scales.
Assuming that fast dynamics has already attained its asymptotic state allows us
to approximate Fk in (1.10) by

F̄ := lim
k→∞
Fk

where F̄ := diag(F̄1, · · · , F̄q) and each F̄i is given by (1.6). This yields the
corresponding auxiliary system

(1.11) Xn+1 = SF̄Xn,

which plays an equivalent role to system (1.7), being the link between the general
system (1.10) and the corresponding aggregated one (to be derived). Moreover,
matrix F̄ decomposes as F̄ = EG, where matrices E and G are those in (1.8).
Defining the global variable as Yn = GXn yields the aggregated system for these
global variables, which reads as follows

(1.12) Yn+1 = G S EYn = S̄Yn.

The following proposition collects the main results achieved in [20]
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1.1.1 Systems built upon the slow time unit.

Proposition 1.1.3 Let matrices S and F := diag(F1, · · · ,Fq) be, respectively,
a Leftkovich matrix and a block diagonal matrix with each block being a regular
stochastic matrix. Assume that matrix S̄ defined in (1.12) is primitive. Let λ
be the strictly dominant eigenvector of S̄ and let w and v be left and right
eigenvectors associated with λ.

1. Consider the auxiliary system (1.11) along with any initial value X0 and
Xn the corresponding solution. It follows that

lim
n→∞

Xn

λn
=
〈w,GX0〉
〈w,v〉

1

λ
SEv

2. Matrix SFk has a strictly dominant eigenvalue

µk = λ+
〈GTw,S(F − F̄)kSEv〉

〈GTw,SEv〉 + o(α2k) = λ+O(αk)

and associated to µk there exist left and right eigenvectors that can be
written as follows

GTw +O(αk) (positive)

SEv +O(αk) (non negative)

3. Consider the general system (1.10) along with any initial value X0 and
Xk,n the corresponding solution. It follows that

lim
n→∞

Xk,n

λn
=
〈w,GX0〉
〈w,v〉

1

λ
SEv +O(αk)

where α ∈ (0, 1).

With system (1.10) as a departure point, approximate aggregation methods for
time discrete autonomous linear systems have been extended to nonautonomous
and stochastic linear systems and to nonlinear autonomous systems. The com-
plete system in all these extensions is written using the slow time unit.

Linear nonautonomous systems.

Nonautonomous systems are appropriate to describe populations living in an
environment that changes with time. Therefore, both the slow and the fast
process are functions of time. We follow [7] in order to describe the corresponding
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results. Basing the model on the slow time scale, it is possible to extend system
(1.10) to the nonautonomous case

(1.13) Xk,n+1 = S(n)Fk(n)Xk,n; Xk,0 = X0.

as done in [88]. Authors let matrices S(n) and F(n) = diag(F1(n), · · · ,Fq(n)),
which stand for the slow and the fast dynamics, respectively, to be function of
time n. Moreover, for each n and i = 1, · · · , q matrix Fki (n) is primitive and 1
is its strictly dominant eigenvalue. This property implies that there exists

F̄i(n) := lim
k→∞
Fki (n) = vi(n)ui(n),

where vi(n) > 0 and ui(n) > 0 are the right and left eigenvectors associated
to 1 verifying that vTi (n)ui(n) = 1. Defining G(n) := diag(uT1 (n), · · · ,uTq (n))
and E(n) := diag(v1(n), · · · ,vq(n)) we get the corresponding auxiliary system

(1.14) Xn+1 = S(n) F̄(n)Xn; X0 = X0,

where F̄(n) := E(n)G(n). Finally, aided by the global variables Yn := G(n)Xn

the aggregated system is defined through

(1.15) Yn+1 = G(n+ 1)S(n)E(n)Yn = S̄(n)Yn; Y0 = Y 0.

As before, dimension of system (1.15) is q while dimension of system (1.13) is N ,
with q < N . In [88] it was shown that for any finite value of n, the population
vector of the original system can be approximated through the population vector
of the reduced system by means of

(1.16) Xk,n+1 = S(n)E(n)Yn + o(αk),

where α ∈ (0, 1)
Relationship between the original system (1.13) and the aggregated system

(1.15) depends on the pattern of the temporal variations of the fast dynamics
matrix. Three different patterns were investigated.

Periodic environments were addressed in [85] by assuming that S(n +
m) = S(n) and F(n+m) = F(n) for certain positive integer m. Letting matrix
Ā := S̄(m− 1) · · · S̄(1)S̄(0) to be primitive, the authors achieved similar results
to those in the autonomous one. This means that the dominant eigenvalue
and the corresponding eigenvector of the complete system can be derived as
a perturbation of an expression depending on the dominant eigenvalue of the
aggregated system and its associated eigenvector, respectively.
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1.1.1 Systems built upon the slow time unit.

In [85] it was discussed time varying environments that asymptotically
stabilize, that is, such that

lim
n→∞

S(n) = S∗

and
lim
n→∞

F(n) = F∗ = diag(F1∗, · · · ,Fq∗).

It was assumed that for all n ≥ 0 matrices S̄(n) have no zero columns and
that matrix S̄∗ is primitive. The results achieved were similar to those in the
autonomous and the periodic cases.

Finally, the case of environments changing with time in a general
fashion was discussed in [18] and [88]. Obviously, in that case it is not possi-
ble to expect that population grows exponentially or that population structure
converges to a certain vector. However, given a general system

Z(n+ 1) = A(n)Z(n),

under quite general conditions the population structure Z(n)/‖Z(n)‖ ”forgets
its past”. This means that under the same sequence of environmental variations,
different initial values Z(0) 6= Z ′(0) lead to population structures getting more
and more similar (even though they do not necessarily converge). That is, it may
happen that

lim
n→∞

∥∥∥∥∥
∏n

j=0 A(n)Z(0)

‖∏n
j=0 A(n)Z(0)‖ −

∏n
j=0 A(n)Z ′(0)

‖∏n
j=0 A(n)Z ′(0)‖

∥∥∥∥∥ = 0

but

lim
n→∞

∥∥∥∥∥
n∏
j=0

A(n)Z(0)−
n∏
j=0

A(n)Z ′(0)

∥∥∥∥∥ 6= 0

This property is known as weak ergodicity. The study of the property of weak
ergodicity for the original and for the aggregated system was carried out in [88].
It was shown that under quite general settings, if k is large enough in system
(1.13), then very general sufficient conditions for weak ergodicity are satisfied
simultaneously for both systems. Such a conditions are related with the positivity
of the product of a consecutive number of matrices in the system.

Up to now, we have considered nonautonomous systems where fast dynamics
changes at the slow times scale, that is, environmental conditions related with
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the fast dynamics do not change with the fast time unit, which seems unrealistic.
Therefore, in [18] it was treated a model such that fast process varies within each
slow time step [n, n+ 1), by means of

Xk,n+1 = S(n)F(k, n)F(k − 1, n) · · · F(1, n)F(0, n)Xk,n.

Thus, the product F(k, n)F(k−1, n) · · · F(1, n)F(0, n) replaces Fk(n) and de-
scribes, for each n ≥ 0, the evolution of the environmental conditions of the fast
dynamics within [n, n + 1). The approximate aggregation and the relationship
between the general and the aggregated system was performed in [18]. In order
to aggregate this system, it is needed that matrices F(k, n) tend to appropriate
matrices when k →∞ for all n ≥ 0.

Linear stochastic systems.

The aggregation results obtained for nonautonomous systems were further ex-
tended to some linear stochastic systems in [87]. In order to build such a system,
it is considered a population living in an habitat that can exhibit l different en-
vironmental states, {1, · · · , l}. Let Xn be the population vector state and let
τn be a random variable defining the environmental conditions in the time step
[n − 1, n). Stochasticity can be introduced in system (1.10) letting the matrix
coefficients depend on τn, that is

(1.17) Xk,n+1 = S(τn+1)Fk(τn+1)Xk,n; Xk,0 = X0.

The reduction process can be performed assuming conditions implying that each
matrix Fi(σ), for any value of σ ∈ {1, · · · , l}, is primitive with strictly dominant
eigenvalue equal to 1. As in the nonautonomous case, in [87], it was shown that
for any finite value of n, the population vector of the original system can be
approximated through the population vector for the reduced system by means of

Xk,n = S(τn+1)E(τn+1)Yn−1 + o(δk),

where o(δk) depends of n and δ ∈ (0, 1). The previous expression is the coun-
terpart of (1.16). Matrix E(τn), whose entries depend on the random variable
τn, is related with the decomposition of limk→∞Fk(τn).

In particular, in [89] it was considered the case of a Markovian environmental
process. The cornerstone concept in this case is the stochastic growth rate (in
the sequel, s.g.r.) which is the equivalent of the dominant eigenvalue in the
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linear case. Assuming that a) τn is an homogeneous Markov chain with a prim-
itive matrix of transition probabilities, b) the set of matrices

{
S̄(1), . . . , S̄(l)

}
is an ergodic set (see [93]) it can be proven (see [101]) that there exists the
aforementioned s.g.r.:

a := lim
n→∞

log ‖Yn‖
n

,

where the limit holds with probability 1. In [87] it was shown that if ma-
trices {S(1), · · · ,S(l)} have no zero rows, then for large enough k the set{
S(1)Fk(1), · · · ,S(l)Fk(l)

}
is ergodic. Therefore, the original system (1.17)

verifies that there exists an s.g.r.:

ak := lim
n→∞

log ‖Xk,n‖
n

.

In addition, it is proved that
lim
k→∞

ak = a.

Thus, if k is large enough, the s.g.r. ak of the original system can be approximated
through that of the reduced system.

Nonlinear autonomous systems.

A first attempt to generalize the formulation stated in system (1.10) was done
in [20], where the fast dynamics was kept linear while the slow dynamics was
nonlinear. Further developments have been done considering nonlinear fast and
slow processes. Namely, in [90] was addressed the problem of the approximate
aggregation of system

(1.18) Xk,n+1 = S ◦ F (k)(Xk,n)

considering general functions F, S ∈ C1(ΩN ; ΩN) instead of linear maps. As
usual, F and S stand for the fast and the slow dynamics and must fulfill certain
hypothesis. Results in [90] are our departure point. Therefore, in what follows,
we detail the results achieved there for the approximate aggregation of system
(1.18). Two hypothesis are needed. The first one keeps the spirit of condition
(1.6) and reads as follows:

Hypothesis 1.1.4 Let ΩN ⊂ RN be a nonempty, bounded, open set. For each
initial value X ∈ ΩN the fast dynamics tends to and equilibrium. That is, there
exists a mapping F̄ ∈ C1(ΩN ; ΩN), such that

(1.19) ∀X ∈ ΩN , lim
k→∞

F (k)(X) = F̄ (X),
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where the super-index (k) stands for the k-fold composition of F . Moreover,
there exist a nonempty, bounded, open set Ωq ⊂ Rq with q < N , and two
mappings

G : ΩN → Ωq, G ∈ C1(ΩN) E : Ωq → ΩN , E ∈ C1(Ωq)

such that F̄ can be expressed as

(1.20) F̄ = E ◦G.

Limit (1.19) in hypothesis 1.1.4 allows to approximate system (1.18) by means
of the auxiliary system

(1.21) Xn+1 = S ◦ F̄ (Xn) ,

meaning that the fast dynamics has already attained its equilibrium. That is why
the sub-index k in the state variables vector has been dropped. Moreover, thanks
to decomposition (1.20), the global variables can be defined by

(1.22) Yn := G(Xn).

The reduced or aggregated system which approximates system (1.18) is given
by

(1.23) Yn+1 = G ◦ S ◦ E (Yn) .

We recall that through this procedure we have constructed an approximation
allowing study a system with N variables through a system with q variables. The
following proposition, whose proof can be found in [90], shows that the dynamics
of the auxiliary system (1.21) and the dynamics of the reduced system (1.23)
determine each other. Actually, this is an example of perfect aggregation [54].

Proposition 1.1.5 Let X0 ∈ ΩN and Y0 := G(X0) ∈ Ωq. Then, the solution
Xn of the auxiliary system (1.21) corresponding with the initial condition X0

and the solution Yn of the aggregated system (1.23) corresponding to the initial
condition Y0 are related by the following expressions

Yn = G(Xn), Xn = E(Yn−1) , n = 1, 2, ...

In addition, given an extra assumption, for each n fixed it is possible to approxi-
mate the solution of the original system (1.18) by means of the solution of the
aggregated model (1.23).
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Proposition 1.1.6 Let X0 ∈ ΩN and let Y0 := G(X0) ∈ Ωq. Let n be a fixed
positive integer and assume that there exists a non-empty bounded and open set
Ω such that Ω̄ ⊂ ΩN , Ω contains the points

{X0, Xi+1 := E(Yi), i = 0, · · · , n− 1} ,

and limk→∞ F
(k) = F̄ is uniform in Ω. Then, the solution Xk,n of the original

system (1.18) corresponding with the initial condition X0 and the solution Yn of
the reduced system (1.23) corresponding with the initial condition Y0 are related
by the following expressions

Yn = lim
k→∞

G(Xk,n), lim
k→∞

Xk,n = E(Yn−1).

The following theorem, whose details can be found in [90], guarantees that the
existence of an equilibrium point Y ∗ for the aggregated system implies, for k large
enough, the existence of an equilibrium X∗k for the original system, which can
be approximated in terms of Y ∗. Moreover, in the hyperbolic case, the stability
of Y ∗ is equivalent to the stability of X∗k and in the asymptotically stable (A.S.)
case, the basin of attraction of X∗k can be approximated in terms of the basin of
attraction of Y ∗.

Theorem 1.1.7 Consider system (1.18) and assume that hypothesis 1.1.4 holds.
Let Y ∗ ∈ Rq be an equilibrium point of system (1.23) so that, according with
proposition 1.1.5 it follows that X∗ = E(Y ∗) is a fixed point of the auxiliary
system (1.21). In addition, assume the following

Hypothesis 1.1.8 There exists a non-empty, open, bounded set Ω ⊂ ΩN such
that X∗ ∈ Ω, Ω̄ ⊂ ΩN and the limits

(1.24) lim
k→∞

F (k) = F̄

and

(1.25) lim
k→∞

DF (k) = DF̄

are uniform in Ω. As usual, DF represents the differential of function F .

In addition to hypothesis (1.1.8), let us assume that 1 is not an eigenvalue of
D[G ◦ S (E(Y ∗))]. Then, there exist r > 0 and an integer k0 ≥ 0 such that
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1. X∗ := E(Y ∗) is an equilibrium point of the auxiliary system (1.21). More-
over, for each k ≥ k0 the general system (1.18) has an unique equilibrium
point X∗k ∈ B̄ (X∗; r) and

lim
k→∞

X∗k = X∗,

where B̄ (X∗; r) stands for the set
{
Z ∈ RN ; ‖X∗ − Z‖ ≤ r

}
.

2. Let Y ∗ be hyperbolic. Then, X∗ is also hyperbolic. Besides, there exists
k∗ ≥ 0 such that for all k ≥ k∗ the equilibrium point X∗k is also hyperbolic.
Moreover, X∗ and X∗k are A.S. (resp. unstable) if and only if Y ∗ is A.S.
(resp. unstable).

3. Let Y ∗ be hyperbolic and A.S. Let X0 ∈ ΩN be such that Y0 := G(X0)
satisfies that

lim
n→∞

(S ◦ F̄ )(n−1)(X0) = X∗.

Assume the following hypothesis

Hypothesis 1.1.9 There exists an open set Q ∈ ΩN containing the set
{X0, Xi+1 := E(Yi), i = 0, 1, · · · , n} and such that limk→∞ F

(k) = F̄ is
uniform in Q

Then, there exists a positive integer k∗∗ such that for k ≥ k∗∗,

lim
n→∞

(S ◦ F (k))(n)(X0) = X∗k .

Remark 1.1.10 Although it is not stated in theorem 1.1.7, these results are also
valid for m-periodic points (see [90] for further details).

Remark 1.1.11 Hypotheses 1.1.8 and 1.1.9 can be synthesized into a more
restrictive one, assuming that limits (1.24) and (1.25) are uniform in ΩN .

1.1.2 Contents of this chapter.

The departure point in this chapter is theorem 1.1.7 and concerns two time scale
systems based on the slow unit time. Namely, we deal with systems of the form
of (1.18), that is

Xn+1,k = S ◦ F (k)(Xn,k).
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According with [90], in practice, it is difficult to decide whether function F de-
composes as hypothesis 1.1.4 prescribes. Moreover, even if one is able to get such
a decomposition, conditions stated in hypothesis 1.1.8 are hard to be checked.

In this chapter we provide with some general classes of systems for which
function F (·) defining the fast dynamics fulfills hypotheses 1.1.4, 1.1.8 and 1.1.9.
Up to now only linear maps have been considered for the fast dynamics. Namely,
F (X) = FX being F an appropriate matrix with constant coefficients or, in
the nonautonomous case, F (n,X) = F(n)X where the entries of matrix F(n)
depend on time. It makes sense also consider that how the state variables evolve
within the fast time scale from time n to time n+ 1 depend on the current state
of such a state variables. This idea is conveyed, for instance, considering

F (X) = F(X)X

instead of F (X) = FX. We adopt this approach in this chapter considering
different classes of functions of the form F (X) = F(X)X, which we describe
summarily in the sequel.

In the context of populations structured in groups and subgroups, when the
fast dynamics of each group is driven by a regular stochastic matrix we get that
the total number of individuals of each group is a global variable. We note Y the
vector containing these global variables, which is function of the state variables.
In section 1.2 (see also [68]) we study the approximate aggregation of system
(1.18) with a nonlinear fast dynamics of the form

F (X) = diag(F1(Y ), · · · ,Fq(Y ))X,

where diag(F1(Y ), · · · ,Fq(Y )) is a block diagonal matrix and, for each Y ,
Fj(Y ) is a regular stochastic matrix for each j = 1, · · · , q. These settings
are applied to several population models driven by demographic and migratory
processes evolving at different time scales. We analyze these models exchanging
the role of the slow and fast dynamics. As a result of this analysis, we slightly
extend the settings presented in this paragraph.

In section 1.3 we deal with the approximate aggregation of systems of the
form of (1.18) where the fast dynamics is given by

F (X) = diag(F1,F2(x1))X,

X = (x1,x2) stands for the state variables vector, diag(F1,F2(x1)) is a block
diagonal matrix and, without lost of generality, matrices F1 and F2(x1) are
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regular stochastic matrices. Of course, matrices F1 and F2(x1) can be replaced
by adequate block diagonal matrices. We apply these results to the study of a
host parasitoid populations spread through a net of patches where individuals
can move between adjacent patches and parasitoids move toward regions with
high host density. Considering that displacements between patches are faster
than local host parasitoid interactions yields a two time scales model matching
with the aforementioned assumptions. These results are collected in [72].

1.2 Fast dynamics depending on global vari-

ables.

The main goal of this section is to apply the aggregation of variables method to
the reduction of a general class of nonlinear discrete models with two time scales
which fits in the framework of the original formulation made in [90] through
system (1.18)

Xk,n+1 = S ◦ F (k)(Xk,n).

Functions S, F ∈ C1(ΩN ; ΩN) stand for the fast and the slow dynamics, X ∈ ΩN

and ΩN ⊂ RN is an open bounded nonempty set. As we mentioned in the
introduction, for a particular two time scales discrete model it is difficult to prove
that hypotheses 1.1.4, 1.1.8 and 1.1.9 are met. We present a class of models for
which these hypotheses are meet and so, theorem 1.1.7 applies. Applications to
population dynamics complete the section.

1.2.1 General settings and main results.

We start describing the model and its mathematical features. Without lost of
generality, let us assume that at time n the state variable vector represent an
structured population given by

Xn = (x1
n, · · · ,xqn),

where xi = (xi1n · · · , xiNin ) defines the population in group i = 1, · · · , q and xijn
is the size of subgroup j in group i at time n. Let N = N1 + · · · + Nq be the
total number of subgroups.

Many applications consider that fast dynamics is internal, conservative of
the total number of individuals and with an asymptotically stable distribution
among groups for every group i = 1, · · · , q. This idea is conveyed, for instance,
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representing the fast dynamics of each group by a projection matrix Fi which is
a regular stochastic matrix of dimensions Ni ×Ni for i = 1, · · · , q. Thus,

F (X) = FX = diag(F1, · · · ,Fq)X

stands for the fast dynamics of the whole population. In this case, hypotheses
1.1.4 and 1.1.8 are trivially satisfied if these projection matrices are constant. For
instance, we may think on an age-structured population with q age classes and
individuals spread among m different patches. Demography stands for the slow
dynamics while migrations between patches is the fast dynamics. In this context
xi stands for the spatial distribution of individuals belonging tho the i-fold age
class, for i = 1, · · · , q. The aforementioned consideration entails that individuals
of each age class reach an stable spatial distribution.

Our aim in what follows is to extend this configuration to the nonlinear case
in which such a projection matrices depend on the total number of individuals
of each group, as we did in [68]. To be precise, the total number of individu-
als of the i-fold group is given, obviously, by xi1 + · · · + xiNi = 1Ti xi, where
1i := (1, . . . , 1)T ∈ RN i

. Thus, we get the vector whose entries are the total
number of individuals of each group by means of

(1.26) UX := diag (1T1 , · · · ,1Tq )X,

where UX ∈ Rq. Next we set up appropriate functions describing the internal
dynamics of each group. Let us note Ωq := UΩN . For each i = 1, · · · , q, let
Fi(·) ∈ C1(Ωq) be a matrix function such that for all Y ∈ Ωq, Fi(Y ) is a regular
stochastic matrix of dimensions N i ×N i. As a consequence, 1 is an eigenvalue
simple and strictly dominant in modulus for Fi(UX), with associated right and
left eigenvectors vi(UX) and 1i, respectively. The eigenvector vi(UX) is the
asymptotically stable probability distribution, i.e., vi(UX) > 0 and 1Ti vi(UX) =
1. The fast dynamics for the whole population is represented by the block
diagonal matrix:

(1.27)
F (X) := diag (F1(UX), . . . ,Fq(UX))X = F(UX)X,

F (k)(X) = Fk(UX)X.

The Perron-Frobenius theorem applies to each matrix Fi(Y ) and we have

F i(UX) := lim
k→∞
Fki (UX) = (vi(UX)| . . . |vi(UX)) = vi(UX)1Ti
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and

(1.28) F(UX) := lim
k→∞
Fk(UX) = diag(F1(UX), · · · ,Fq(UX)).

If we note

F̄ (X) := diag (F̄1(UX), . . . , F̄q(UX))X = F̄(UX)X

and, ∀Y ∈ Ωq,

(1.29)
G(X) := UX,

E(Y ) := diag (v1(Y ), . . . ,vq(Y ))Y,= V(Y )Y,

we also have

F̄ (X) = lim
k→∞

F (k)(X) = E ◦G(X) = V(Y )UX.

We have shown that F (X) verifies hypothesis 1.1.4 with

(1.30) Y = UX

being the global variables. Using F (X) as fast dynamics we can write the fol-
lowing nonlinear two time scales model of the form (1.18).

(1.31) Xk,n+1 = S
(
Fk(UXk,n)Xk,n

)
.

whose corresponding auxiliary system is Xn+1 = S
(
F̄(UXn)Xn

)
and its ag-

gregated system reads as follows

(1.32) Yn+1 = US (V(Yn)Yn) .

The following step in order to apply theorem 1.1.7 to system (1.31) is proving
that the map F defined by (1.27) also verifies hypothesis 1.1.8. For doing this,
we first need the following lemma.

Lemma 1.2.1 Let F(·) be a C1 matrix function defined on Ωq, such that for
each Y ∈ Ωq, F(Y ) is a n × n regular stochastic matrix. Let us consider
the function v : Ωq → Rn where v(Y ) is the unique eigenvector associated to
eigenvalue 1, normalized by the condition 1Tnv(Y ) = 1. Then, v ∈ C1(Ωq).
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Proof.– For each Y ∈ Ωq, the normalized eigenvector v(Y ) associated to the
eigenvalue 1 is the unique solution to the system:

(1.33)

{
(F(Y )− In)v = 0

1Tnv = 1

Set Y0 ∈ Ωq and let v(Y0) be the corresponding solution to (1.33). Since
1Tn (F(Y )−In) = 0Tn , an elementary application of the Rank theorem (see, for in-
stance, [107]) allows to solve the system (1.33) in a neighborhood of (Y0,v(Y0)),
N(Y0) ⊂ Ωq × Rn, by eliminating the last row of the matrix F(Y ) − In. As
an immediate consequence, this theorem assures that the function v(·) defined
implicitly by system (1.33) is C1 in a neighborhood of Y0, as we wanted to prove.

�

Let us observe that the application of the Rank theorem to system (1.33)
is based on the following elementary result: for each n × n regular stochastic
matrix F0, we have:

Rank

(
F0 − In

1Tn

)
= n.

Regarding hypothesis 1.1.8, let us notice that for each Y ∈ Ωq, matrix F(Y )
can be written as:

F(Y ) = (V(Y )|R(Y ))

(
Iq O
O H(Y )

)(
U
W(Y )

)
= V(Y )U +Q(Y )

with Q(Y ) := R(Y )H(Y )W(Y ), R(Y ),W(Y ) are suitable matrices and H(Y )
corresponds to the Jordan blocks of F(Y ) associated to eigenvalues of modulus
strictly less than 1. Therefore

(1.34) ρ(Q(Y )) < 1,∀Y ∈ Ωq

where ρ denotes the spectral radius.
Moreover, straightforward calculations lead to

(1.35) Fk(Y ) = V(Y )U +Qk(Y ) , k = 1, 2, . . .

Bearing in mind lemma 1.2.1, and since F ∈ C1(Ωq), let us observe that we
also have Q ∈ C1(Ωq).

We are now able to prove the following:

Proposition 1.2.2 The maps F and F̄ defined in (1.27) and (1.28) satisfy that:
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1. lim
k→∞

F (k) = F̄

2. lim
k→∞

DF (k) = DF̄

uniformly on each compact set KN ⊂ ΩN .

Proof.– We already know that limit 1 holds pointwise. Moreover, from (1.35)
we have, for each X ∈ ΩN :

‖F k(X)− F̄ (X)‖ = ‖Fk(UX)X − E(UX)UX‖ ≤ ‖Qk(UX)‖‖X‖.

Therefore, as U is a constant matrix, to prove (i) it is enough to prove that, for
each compact set Kq ⊂ Ωq we have

sup
Y ∈Kq

‖Qk(Y )‖ −→ 0 (k →∞)

which, in turn, will be a consequence of the existence of two constants C > 0
and β ∈ (0, 1) such that

(1.36) ∀Y ∈ Kq , ‖Qk(Y )‖ ≤ Cβk , k = 1, 2, . . .

Since Q(·) is continuous, the spectral radius ρ(Q(·)) is also continuous on
Ωq and then, bearing in mind (1.34), we can assure the existence of a constant
α with 0 < α < 1 such that supY ∈W ρ(Q(Y )) ≤ α, where W is some bounded
open set with Kq ⊂ W and W̄ ⊂ Ωq.

Let β be fixed with α < β < 1 and set Y ∈ W . It is a well known fact that
there exists a matrix norm ‖ · ‖Y (depending on Y ) for which ‖Q(Y )‖Y < β.
The continuity of matrix Q(·) and of the norm allow us to assure the existence
of an open neighborhood of Y , B(Y ) ⊂ W , such that supZ∈B(Y ) ‖Q(Z)‖Y ≤ β.

Obviously, the family B := {B(Y ) ; Y ∈ W} is an open covering of Kq

and since Kq is a compact set, there exist a finite collection of points Yj ∈ W ,
j = 1, . . . , r such that Kq ⊂ ∪rj=1B(Yj). Then, for each Y ∈ Kq there exists
j ∈ {1, . . . , r} such that ‖Q(Y )‖Yj ≤ β, and therefore ‖Qk(Y )‖Yj ≤ βk,
k = 1, 2, . . .. As a consequence, bearing in mind that all the matrix norms are
equivalent, we have that ‖Qk(Y )‖ ≤ Cjβ

k, for some constant Cj > 0. Choosing
C := max(C1, . . . Cr), the estimation (1.36) holds.

To prove the assertion (ii) let us notice that (1.35) implies that

∀X ∈ ΩN , DF k(X) = DF̄ (X) +D[Qk(UX)X].
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Therefore, we have to prove that, for each compact set KN ⊂ ΩN we have

sup
X∈KN

‖D[Qk(UX)X]‖ −→ 0 (k →∞).

Let us start with some straightforward calculations. Let A(·) := (aij(·))Ni,j=1

be a C1 matrix function defined on ΩN and set R the scalar function defined on
ΩN by R(X) := A(X)X, X := (x1, . . . , xN)T ∈ ΩN . A direct calculation of
the partial derivatives leads to the following expression:

DR(X) = A(X) +



N∑
j=1

xjgrad a1j(X)

...
N∑
j=1

xjgrad aNj(X)


.

Choosing A(X) := Qk(UX) in the above expression, with the help of the chain
rule we have:

D[Qk(UX)X] = Qk(UX) +



N∑
j=1

xjgrad q
(k)
1j (UX)

...
N∑
j=1

xjgrad q
(k)
Nj(UX)


U

where we have denoted by q
(k)
ij (Y ) the entries of matrix Qk(Y ).

Let KN ⊂ ΩN be a compact set and set Kq := UKN ⊂ Ωq, which is also a
compact set. Bearing in mind (1.36), the above expression leads to the following
estimation:

‖D[Qk(UX)X]‖ ≤ C1β
k

+C2‖G‖‖X‖ max
i,j=1,...,N

(
sup
Y ∈Kq

∣∣∣∣∣∂q
(k)
ij

∂ys
(Y )

∣∣∣∣∣ , s = 1, . . . , q

)
where C1 > 0, C2 > 0 are two constants whose specific values are not relevant.

For each Y := (y1, . . . , yq)
T ∈ Ωq and k = 1, 2, . . . we have

∂Qk
∂ys

(Y ) =
∂Q
∂ys

(Y )Q(Y )(k−1). . . Q(y)

+Q(Y )
∂Q
∂ys

(Y )Q(Y )(k−2). . . Q(Y ) + · · ·+Q(Y )(k−1). . . Q(Y )
∂Q
∂ys

(Y )
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and since Q(·) has continuous partial derivatives, then bounded on each compact
set, we can conclude that

sup
X∈KN

‖D[Qk(UX)X]‖ ≤ C1β
k + C3kβ

k−1 −→ 0 (k →∞)

as we wanted to prove.

�

Once we have proved that function F defined in (1.27) verifies hypotheses 1.1.4
and 1.1.8, theorem 1.1.7 yields the following result that allows us to study some
asymptotic behaviors of system (1.31) in terms of the aggregated system (1.32).

Theorem 1.2.3 Consider the general two time scales system (1.31) given by

Xk,n+1 = S(Fk(UXk,n)Xk,n)

where X ∈ ΩN , ΩN ⊂ RN is an open bounded nonempty set, S ∈ C1(ΩN),
U and F(·) ∈ C1(Ωq) are those defined by (1.26) and (1.27) and Ωq = UΩN .
Consider as well the corresponding auxiliary system Xn+1 = S(F̄(UXn)Xn) and
the aggregated system (1.32) that we have derived in the previous paragraphs

Yn+1 = US (V(Yn)Yn)

where V(·) is that defined in (1.29) and Y stands for the global variables defined
through (1.30). Let Y ∗ ∈ Ωq be a hyperbolic equilibrium point of system (1.32).
Then, there exist r ∈ R with r > 0 and an integer k0 ≥ 0 such that for all
k ≥ k0 the following holds:

1. X∗ := V(Y ∗)Y ∗ is an hyperbolic fixed point of the auxiliary system. More-
over, system (1.31) has an unique equilibrium point X∗k in B̄(X∗; r) which
is hyperbolic and satisfies

lim
k→∞

X∗k = X∗,

where B̄(X∗; r) =
{
Z ∈ RN ; ‖Z −X∗‖ ≤ r

}
.

2. X∗ and X∗k are asymptotically stable (resp. unstable) if and only if Y ∗ is
asymptotically stable (resp. unstable).
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3. Let Y ∗ be asymptotically stable and let X0 ∈ ΩN be such that the solution
{Yn}n=0,1,... of the aggregated system (1.32) corresponding with the initial
data Y0 := UX0 satisfies that limn→∞ Yn = Y ∗. Then, there exists k1 ≥ 0
such that for each k ≥ k1, the solution of system (1.31) with initial value
Xk,0 = X0 satisfies that

lim
n→∞

Xk,n = X∗k .

Proof.– From the previous analysis in follows that hypothesis 1.1.8 holds any
compact set of ΩN . As a consequence, hypothesis 1.1.9 holds too. The regularity
conditions imposed in hypothesis 1.1.4 hold immediately from the C1 regularity
of eigenvectors vi(·), i = 1, · · · , q, as established in lemma 1.2.1. Then, the
theorem holds.

�

In the sequel, this reduction procedure is applied to several models of popula-
tion dynamics driven by demographic and migratory processes which take place
at two different time scales. An analysis of these models exchanging the role of
the slow and fast dynamics is provided: when a Leslie type demography is faster
than migrations, a multi-attractor scenario appears for the reduced dynamics.
Most important, in this example we extend slightly the framework presented in
theorem 1.2.3. On the other hand, when the migratory process is faster than
demography, the reduction process gives rise to new interpretations of well known
discrete models, including some Allee effect scenarios.

In some applications, particularly in ecology, it would be more realistic to
have the fast dynamics dependent on the state variables and not just on the
global variables as in theorem 1.2.3. Nevertheless, it does not seem easy to find
a proof for the most general case and specific proofs should be provided for each
particular case of fast dynamics depending on state variables as we do in section
1.3. On the other hand, as we will see in the next section, it is possible to develop
interesting applications keeping within the framework of theorem 1.2.3.

1.2.2 Multi-patch models with fast migrations.

We begin treating the case of a population inhabiting a multi-patch environment
but with no further structure, that is, a population constituted by just one group
which is subdivided into N subgroups representing the local populations at the
N patches making up its habitat.
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As a consequence, the population vector at time n is Xn = (x1
n, . . . , x

N
n )T ,

the fast dynamics (associated in our models to the migration process) is repre-
sented by a regular (one block) stochastic matrix F(y), whose entries depend
on the total population y := x1 + · · · + xN ∈ R, and the slow dynamics is
represented by a function S ∈ C1(Ω) which gives the local demography in each
patch. By the sake of simplicity and without lost of generality, in what follows
we consider a two patches environment, i.e. N = 2. Thus, the slow dynamics is
described by

S(Xn) := (s1(x1
n), s2(x2

n)), Xn := (x1
n, x

2
n)

where si, i = 1, 2, are two non-negative C1 functions defined on R+. The
migration matrix F(y) is written in terms of C1 real functions a, b : R+ → (0, 1):

F(y) :=

(
1− a(y) b(y)
a(y) 1− b(y)

)
.

Since F(y) is a regular stochastic matrix, we have

F̄(y) := lim
k→∞
Fk(y) = (v(y)|v(y))

where

v(y) :=

(
v1(y)
v2(y)

)
=


b(y)

a(y) + b(y)

a(y)

a(y) + b(y)

 .

A straightforward application of the results established in section 1.2 leads to
the aggregated system:

(1.37) yn+1 = s1 (v1(yn)yn) + s2 (v2(yn)yn) .

We study equation (1.37) by setting concrete (and well known) local dynamics.

Source-sink Malthusian local demography.

We will carry out a detailed analysis of the above model assuming that a malthu-
sian dynamics acts at each patch, that is:

(1.38) S(Xn) := (d1x
1
n, d2x

2
n).

Moreover we will assume that 0 < d1 < 1 < d2, which means that patch 1
behaves as a sink and patch 2 as a source.
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We provide a complete analysis of (1.38) by considering a and b as mono-
tone functions of the global variable y. Far from plain, we find out a rich be-
havior. In particular, we provide an explanation of two classical mono-species
discrete models (due to Beverton-Holt and Ricker, respectively) in terms of a
sink-source environment with fast density dependent migrations coupled to sim-
ple local malthusian dynamics. On the other hand, we notice in advance that
when both a(y) and b(y) are simultaneously increasing or decreasing functions
yield more complicated dynamics and Allee effect scenarios may arise.

When the slow dynamics is given by (1.38), the aggregated model (1.37)
reads as:

(1.39) yn+1 =

(
d1b(yn) + d2a(yn)

a(yn) + b(yn)

)
yn := h(yn)yn.

It is evident that y0 = 0 is a fixed point of the above model, but we are mainly
interested in the existence and stability properties of the positive fixed points y∗,
which are the solutions to equation h(y) = 1.

To study the behaviour of function h, we should take into account its deriva-
tive:

h′(y) = (d2 − d1)
a′(y)b(y)− a(y)b′(y)

[a(y) + b(y)]2
.

For the sake of simplicity we restrict our analysis to the case in which functions
a(y), b(y) are monotone. When one of them is increasing and the other is
decreasing, it is evident that h(y) is strictly monotone. Therefore, whether
function h(y) crosses or not the line y = 1 is completely determined by the
values h(0) and h(∞) := limy→+∞ h(y). Moreover, in the case in which y∗
exists, it is unique and its stability is determined by the value h′(y∗)y∗. On the
other hand, the stability of the fixed point y0 = 0 depends on the value of h(0).

These results are summarized as follows:

a(y) b(y) h(0) h(∞) y0 = 0 y∗

↘ ↗ > 1 ∈ (0, 1) U. ∃, U. or A.S.
↘ ↗ > 1 > 1 U. @
↘ ↗ ∈ (0, 1) ∈ (0, 1) G.A.S. @
↗ ↘ ∈ (0, 1) > 1 A.S. ∃, U.
↗ ↘ ∈ (0, 1) ∈ (0, 1) G.A.S. @
↗ ↘ > 1 > 1 U. @

where the arrows ↘ and ↗ stand for a decreasing and an increasing function
respectively , and U., A.S. and G.A.S. stand for unstable, asymptotically stable
and globally asymptotically stable, respectively.
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The fact that local dynamics are of malthusian type allows extinction and
unbounded growing to be expected at a global level. Nevertheless, as we see
in the first row of the previous table, appropriate density dependent migration
rates can lead the corresponding model to posses a positive asymptotically stable
equilibrium. Two examples are described below.

If we choose

(1.40) a(y) :=
α− d1(1 + βy)

d2 − d1

and b(y) :=
d2(1 + βy)− α

d2 − d1

for positive parameters α and β, direct calculations yield the corresponding ag-
gregated system (1.39)

yn+1 =
αyn

1 + βyn
,

that is, the classical Beverton-Holt equation [17] which, for α > 1, possesses a
positive equilibrium y∗ = (α − 1)/β globally asymptotically stable. Condition
a(y), b(y) ∈ (0, 1) is needed, which is true if

α− d2

βd1

< y <
α− d1

βd2

.

We expect to explain the Beverton-Holt model through the two time scales
spatially distributed source sink malthusian model for initial values close to the
corresponding equilibrium y∗ = (α − 1)/β, which happens when the following
holds

1 < α < min

{
d2 − d1

1− d1

,
d2 − d1

d2 − 1

}
.

If we choose

a(y) :=
er(1−y/K) − d1

d2 − d1

and b(y) :=
d2 − er(1−y/K)

d2 − d1

.

where r and K are positive parameters, the aggregated system obtained is the
Ricker equation [81]

yn+1 = exp(r(1− yn/K))yn.

Condition a(y), b(y) ∈ (0, 1) must hold which, in this case, is true if

max

{
K

(
1− ln(1 + d1)

r

)
, K

(
1− ln d2

r

)}
< y < K

(
1− ln d1

r

)
.

The positive equilibrium of the Ricker equation is y∗ = K. Then, our inter-
pretation of the Ricker equation through a two time scales spatially distributed
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models holds whenever the corresponding initial values of the aggregated system
are chosen close enough to y∗ = K.

Similar approaches using aggregation methods for ordinary differential equa-
tions were presented in [10] and [12]. Besides, other interpretations of this type
have been recently presented by Geritz and Kisdi [36]. There, starting from
a continuous-time resource-consumer model for the dynamics within a year, a
discrete-time model for the between-year dynamics is derived. This model is an-
alyzed assuming that the within-year resource dynamics in absence of consumers
takes different functional forms. Considering particular constant rates for the
influx and efflux of the resource, the Beverton-Holt model, the Ricker model and
many other models are recovered. Further models derived by systematically vary-
ing the within year patterns of reproduction and aggression between individuals
can be found in [29].

We have noticed that Allee effect may arise when both a(y) and b(y) are
simultaneously increasing or decreasing functions. We illustrate this fact with
the next example. Let us assume that a(y) and b(y) are increasing functions
given by

a(y) :=
y2

y2 + β
and b(y) :=

y2 + β

y2 + δ
, 0 < β < δ.

Function h(y) in (1.39) becomes

h(y) =
d1 (y2 + β)

2
+ d2 (y2 + δ) y2

(y2 + β)2 + (y2 + δ) y2
.

The qualitative analysis of equation (1.39) is straightforward having in mind
that positive solutions are decreasing if h(y) < 1, increasing if h(y) > 1 and the
positive fixed points are the roots of equation h(y) = 1. Since h(0) = d1 < 1,
the fixed point y∗0 = 0 is always asymptotically stable.

To find when h(y) < 1 and when h(y) > 1 we know that h(0) = d1 < 1 and
limy→∞ h(y) = (d1 + d2)/2. Moreover, if we look at the sign of h′(y),

h′(y) =
2(d2 − d1)y ((2β − δ)y4 + 2β2y2 + β2δ)

(2y4 + (2β + δ)y2 + β2)2 ,

we see that if δ ≤ 2β then h(y) is increasing in [0,∞) while if δ > 2β then h(y)
is increasing in [0, yM) and decreasing in (yM ,∞), where yM =

√
βδ/(δ − 2β)

is the only positive root of equation h′(y) = 0. Thus, we have:
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• If δ ≤ 2β and (d1 + d2)/2 ≤ 1, there is no positive fixed point.

• If δ ≤ 2β and (d1 + d2)/2 > 1, there is a positive fixed point which is
unstable.

• If δ > 2β and h(yM) < 1, there is no positive fixed point.

• If δ > 2β and h(yM) = 1, yM is the only positive fixed point and it is
unstable.

• If δ > 2β, h(yM) > 1 and (d1 + d2)/2 ≥ 1, there is a positive fixed point,
y∗1 < yM , which is unstable.

• If δ > 2β, h(yM) > 1 and (d1 + d2)/2 < 1, there are two positive fixed
points, y∗1 < yM < y∗2. In this case the positive solutions of equation
(1.39), which are all monotone, verify the following:

If the initial condition y0 < y∗1 then limn→∞ yn = 0 and if y0 > y∗1 then
limn→∞ yn = y∗2,

i.e., at low population densities population gets extinct, while the evolution
of population densities above y∗1 leads to y∗2.

As we see in the last case, an Allee effect scenario appears out of local
malthusian dynamics in a sink-source environment with fast density dependent
migrations.

We consider now source-sink local demography of Beverton-Holt type to-
gether with monotone nonlinear fast migrations depending on global variables.
That is, in lieu of (1.38), we assume that the slow dynamics is given by:

S(Xn) :=

(
d1x

1
n

1 + c1x1
n

,
d2x

2
n

1 + c2x2
n

)
, 0 < d1 < 1 < d2 , ci > 0 , i = 1, 2

and that functions a(y), b(y) defining the fast dynamics F(y) are given by

a(y) :=
y

1 + y
; b(y) :=

1

1 + y
.

In this situation, the aggregated system (1.37) reads:

yn+1 = h(yn)yn ; h(yn) :=
d1

1 + (1 + c1)yn
+

d2yn
1 + yn + c2y2

n

.
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Arguing in a similar way to the previous section, we obtain that y0 = 0 is an
equilibrium point which is always A.S. since h(0) = d1 < 1.

The positive equilibria, if they exist, are the positive solutions to h(y) = 1.
Notice that

h′(y) = − d1(1 + c1)

[1 + (1 + c1)y]2
+

d2(1− c2y
2)

(1 + y + c2y2)2
.

If d2 > d1(1 + c1), then there exists a unique value yM ∈ (0, 1/
√
c2) such that

h′(yM) = 0 and moreover h takes its maximum value at this point. Therefore,
bearing in mind that h(0) = d1 < 1 and h(+∞) = 0, the equation h(y) = 1 will
have either two positive solutions or none according to h(yM) > 1 or h(yM) < 1
respectively. One sufficient condition for h(yM) > 1 is that h(1/

√
c2) > 1 which

yields a relationship between the parameters of the model. In turn, a simple
sufficient condition for this is d2 > 1 + 2

√
c2. Summing up, we can assure that

for large enough values of d2 the aggregated model has two positive equilibria
0 < y∗ < y∗∗ such that y∗ is unstable and y∗∗ can be asymptotically stable or
unstable.

1.2.3 An age-structured population model with fast
demography.

In this application we switch the role of migrations and demography as fast and
slow process. This section can be considered as an extension of some results
in [86], where a linear case is discussed. The theory developed in section 1.2.1
does not exactly match with the setting here, but it can be easily adapted: ev-
erything works if the fast dynamics is given by a non-negative C1 matrix function
whose dominant eigenvalue is 1 and the corresponding associated normalized left
eigenvector is constant. We note in advance that this adaptation slightly mod-
ifies the meaning of the corresponding global variables, which we will clarify in
the following paragraphs.

Let us consider an age-structured population distributed between two spatial
patches. We distinguish two age classes: juvenile (class 1, non reproductive)
and adult (class 2, reproductive) so that the state of the population at time n is
represented by a vector:

Xn := (x1
n, x

2
n)T ∈ R4

+, xin := (xi1n , x
i2
n )T , i = 1, 2

where xijn stands for the individuals of class j inhabitant patch i.
Let us set demography as a local process driven by a Leslie C1 matrix function:

Li(y) :=

(
0 f i(y)

si1(y) si2(y)

)
, i = 1, 2; ∀y ∈ R+
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where, as usual, f i(·) stands for the fertility rate of the adults and sij(·), j = 1, 2,
stand for the survival rate of each age class. In order to fit in the framework of
section 1.2.1, let us impose that 1 is the strictly dominant in modulus eigenvalue
of matrix Li(·), which yields

(1.41) si2(y) + f i(y)si1(y) = 1, i = 1, 2, ∀y ∈ R+.

As a consequence, we can find associate positive right and left eigenvectors vi(y),
ui(y), which can be chosen normalized by the condition uTi (y)vi(y) = 1. In fact,
these vectors are given by

ui(y) =

 1
1

si1(y)

 :=

(
ui1(y)
ui2(y)

)
;

vi(y) =


f i(y)si1(y)

1 + f i(y)si1(y)

si1(y)

1 + f i(y)si1(y)

 :=

(
vi1(y)
vi2(y)

)
.

The general theory of non-negative matrices applies, so that there exists the limit

L̄i(y) := lim
k→∞
Lki (y) = vi(y)uTi (y), i = 1, 2, ∀y ∈ R+.

The fast dynamics for the whole population will be represented by the block
diagonal matrix

L(Y ) :=

(
L1(y1) 0

0 L2(y2)

)
, ∀Y :=

(
y1

y2

)
∈ R+.

Bearing in mind the above considerations, it is evident that the following limit
exists

L̄(Y ) := lim
k→∞
Lk(Y ) =

(
L̄1(y1) 0

0 L̄2(y2)

)
= V(Y )U(Y )

where, as in section 1.2.1, we have introduced the notations

V(Y ) := diag (v1(y1),v2(y2)); U(Y ) := diag (uT1 (y1),uT2 (y2)).
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In addition, we consider migrations between patches. To simplify, we will consider
a linear process represented by a constant stochastic matrix

M :=


1− a1 0 a2 0

0 1− b1 0 b2

a1 0 1− a2 0
0 b1 0 1− b2

 , ai, bi ∈ (0, 1) , i = 1, 2

where ai and bi stand for the fraction of juvenile and adult individuals which
move from patch i respectively.

In this section we are assuming that demography is much faster than mi-
grations and spatially internal, that is, demography is local and only dependent
on the population on each patch. In order to be able to retain the smoothness
results established in section 1.2.1, we assume that matrix U(·) is constant. To
met this assumption we only need to suppose that si1(·), the survival rate of
juveniles at patch i = 1, 2, is constant. Then, global variables are defined by

Yn := UXn =

(
x11
n + (1/s1

1)x12
n

x21
n + (1/s2

1)x22
n

)
:=

(
y1
n

y2
n

)
which have a biological meaningful interpretation as they are the population at
each patch weighted by its reproductive values. This quantity is interpreted as
a sort of vital projection of the population at each region: the average number
of individuals which will rise from the actual population. Summing up, we can
interpret the dependence (independence) of the coefficients of matrix L(y) on
global variables as follows. Letting f i and si2(·), for i = 1, 2 depend on global
variables means that fertility and survival rates of the reproductive class is related
with its capability for perpetuate the population. This allows to simulate self-
regulation assuming, for instance, that f i decreases as global variables increase.
Besides, assuming si1(·) to be constant means that juvenile survival rate does not
depend on such an ability.

Finally, the slow-fast model that we are considering is:

Xk,n+1 =MLk(UXk,n)Xk,n

which, arguing as in section 1.2.1, can be reduced to the following system ex-
pressed in terms of the global variables:

Yn = UMV(Yn)Yn.
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Direct substitutions lead to the following nonlinear aggregated system:

y1
n+1 = [u1

1(1− a1)v1
1(y1

n) + u1
2(1− b1)v1

2(y1
n)] y1

n

+ [u1
1a2v

2
1(y2

n) + u1
2b2v

2
2(y2

n)] y2
n,

y2
n+1 = [u2

1a1v
1
1(y1

n) + u2
2b1v

1
2(y1

n)] y1
n

+ [u2
1(1− a2)v2

1(y2
n) + u2

2(1− b2)v2
2(y2

n)] y2
n,

to which the general results on stability of equilibria established in section 1.2.1
apply.

To perform an numerical analysis of this system, set

f i(yi) :=
αi

1 + yi
, αi ≥ 0 , i = 1, 2

which provides the aggregated system:

y1
n+1 =

[
(1− a1)α1s

1
1 + (1− b1)(1 + y1

n))

1 + α1s1
1 + y1

n

]
y1
n

+

[
s2

1(a2α2 + b2(1 + y2
n)/s1

1)

1 + α2s2
1 + y2

n

]
y2
n

y2
n+1 =

[
s1

1(a1α1 + b1(1 + y1
n)/s2

1)

1 + α1s1
1 + y1

n

]
y1
n

+

[
(1− a2)α1s

2
1 + (1− b2)(1 + y2

n)

1 + α2s2
1 + y2

n

]
y2
n

whose fixed points are the solutions to

(1.42)


0 = −a1α1s

1
1 + b1(1 + y1)

1 + α1s1
1 + y1

y1 +
s2

1(a2α2 + b2(1 + y2)/s1
1)

1 + α2s2
1 + y2

y2

0 =
s1

1(a1α1 + b1(1 + y1)/s2
1)

1 + α1s1
1 + y1

y1 − a2α1s
2
1 + b2(1 + y2)

1 + α2s2
1 + y2

y2.

Obviously, (y1
0, y

2
0) := (0, 0) is a fixed point to equation (1.42). Moreover, there

are no fixed points of the form (y1, 0) or (0, y2) with y1 > 0 or y2 > 0. Further
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Figure 1.1: Basins of attraction of the asymptotically stable fixed points (0,
0), (3.44, 1.57) (too small to be plotted in this picture) and (5.36, 2.68).
Parameter values: a1 = 0.1, a2 = 0.3, b1 = 0.3, b2 = 0.7, α1 = 100, α2 = 45,
s1

1 = 0.3, s2
1 = 0.1.

calculations give rise to

y2 =
a2b1α2(y1 + 1)

a1b2α1

− 1

where y1 is any solution to equation

a1α1s
1
1 + b1(1 + y1)

1 + α1s1
1 + y1

y1 =
s2

1

(
a2α2 + a2b1α2(1+y2)

a1α1s11

)
α2s2

1 + a2b1α2(1+y1)
a1b2α1

[
a2b1α2(y1 + 1)

a1b2α1

− 1

]
.

Numerical experiments carried out using a large range for the parameters show
that there are several scenarios for which there exists a positive asymptotically
stable fixed point, as well as several scenarios for which there exist two positive
asymptotically stable fixed points. This is shown for particular values of the
parameters in figure 1.1 and figure 1.2.
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Figure 1.2: From white to black, zones with none, one or two positive asymp-
totically stable fixed points. Parameter values: a1 = 0.1, a2 = 0.3, b1 = 0.3,
b2 = 0.7, α1 = 100, α2 = 45, s1

1 = 0.3, s2
1 = 0.1. b1 and b2 range from 0.01

up to 1.0, step 0.005.

Conclusions.

In this section we have presented a general class of nonlinear two-time scales
discrete dynamical systems susceptible of being reduced by means of the so-
called aggregation of variables method. These systems can be used as models for
population dynamics that combine both migratory and demographic processes
taking place at different time scales. In the applications proposed herein we
have considered situations in which demography can be considered fast with
respect to migration and, conversely, models in which displacement are faster
than demography.

In both cases, we have let the fast dynamics depend on global variables.
Even if its not a general assumption, when incorporated to simple two time
scale models it turned out to promote richer behavior. Namely, Alleé effect,
multi attractor scenarios or even reinterpretation of classical population models.
These results point out the importance of considering two time scale models
including a sort of self-regulation at the fast time scale. That is, models where
within the fast time scale how individuals evolve depend on the current state of
these individuals, rather that on the total population size or other global variable.

The following section goes in this direction.
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Fast dynamics depending on some state variables.

1.3 Fast dynamics depending on some state

variables.

The approach of this section is motivated by the study of a host-parasitoid
model [72]. In this work, we consider hosts and parasitoids spread in a chain
of patches. Assuming individual movements between patches to be faster than
host-parasitoid interactions at each patch yields a two time scales system. On
the one hand, hosts migration rates were constant. On the other hand, para-
sitoids seek for those regions were host density is high avoiding those with low
host density. Thus, parasitoid migration rates from each patch depend on hosts
density in that patch. We are still dealing with a population structured into two
groups (hosts and parasitoids) and subgroups (host and parasitoid densities in
each region).

Next, we generalize this schema to an arbitrary amount of groups and sub-
groups.

1.3.1 General settings and main results.

We proceed with the theoretical settings. Without lost of generality, we refer
to a population divided in q groups, and each group for i = 1, · · · , q divided
into Ni subgroups. Let xijn stand for the number of individuals of subgroup j,
(j = 1, · · · , Ni) of group i at time n. The state variables in group i are collected
in vector xin at time n which in turn are assembled in vector

Xn = (x1
n, · · · ,xqn).

The novelty relies in the fact that, at the fast time scale, the evolution of some
groups depends on the state of other group at the fast time scale. We classify
groups in two different classes. On the one hand those evolving independently
at the fast time scale, whose fast dynamics is represented by a constant matrix.
Without lost of generality, these groups are assumed to be the first h and are
labeled by I1 := {1, · · · , h}. On the other hand, the rest of the groups, the
q − h groups, labeled with I2 := {h+ 1, · · · , q}, whose dynamics depend on
the state variables of those groups in I1. We note the population corresponding
to both subsets by X1 = (x1, · · · ,xh) ∈ Rd1 , with d1 = N1 + · · · + Nh, and
X2 = (xh+1, · · · ,xq) ∈ Rd2 , with d2 = Nh+1 + · · ·+Nq, respectively. Thus, we
have X = (X1, X2) and d1 + d2 = N . We assume that X ∈ ΩN ⊂ RN , where
ΩN is an open bounded nonempty set. We also note

Ωd1 :=
{
X1 ∈ Rd1 ; ∃X2 ∈ Rd2 ; (X1, X2) ∈ ΩN

}
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and
Ωd2 :=

{
X2 ∈ Rd2 ; ∃X1 ∈ Rd1 ; (X1, X2) ∈ ΩN

}
the restrictions of ΩN to Rd1 and Rd2 , respectively.

We assume that fast dynamics is conservative of the total number of individ-
uals and internal to each group. We represent it by means of a block diagonal
matrix F with q blocks (one for each group). Let F1 be the submatrix of F
describing the evolution of groups belonging to I1, that is,

(1.43) F1 = diag(F1,1, · · · ,F1,h)

where each block F1,i is a regular stochastic matrix for i = 1, · · · , h. Let F2 be
the submatrix of F describing the evolution of groups belonging to I2 depends
on X1 ∈ Ωd1 through

(1.44) F2(X1) = diag(F2,h+1(X1), · · · ,F2,q(X
1))

where F2(·) ∈ C2(Ωd1) and for each X1 ∈ Ωd1 each block F2,j(X
1) is also a

regular stochastic matrix, for j = h+ 1, · · · , q. Thus, fast dynamics is given by

(1.45) F (X) =

(
F1 0
0 F2(X1)

)(
X1

X2

)
.

Finally, combining fast dynamics with a general slow process represented by
S ∈ C1(ΩN) yields the general system

(1.46) Xk,n+1 = S ◦ F (k)(Xk,n)

where k represents the ratio of the fast to the slow time scale. From (1.45),
straightforward calculations yield

(1.47) F (k)(X) =

 Fk1 0

0 F2

(
Fk−1

1 X1
)
. . .F2 (F1

1X
1)F2 (X1)

( X1

X2

)

thus, first block evolves according to the powers of F1 while the dynamics of the
second block is governed by means of an inhomogeneous matrix product.

The goal of this section consists in proving that system (1.46) is susceptible
of being aggregated according to [90]. So we start by showing that hypotheses
1.1.4 holds; i.e., there exists F̄ (X), the pointwise limit of F (k)(X) as k → ∞,
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that can be appropriately decomposed allowing the definition of global variables
and the reduction of the system.

We have assumed that F1,i is a regular stochastic matrix for any i ∈ I1. In
this case, it is well known that

lim
k→∞
Fk1,i = F̄1,i = v1,i1

T

where 1T = (1, · · · , 1) (of appropriate dimension) and v1,i are, respectively, the
left and right eigenvectors associated to the eigenvalue 1 such that 1Tv1,i = 1.
We define

(1.48)

F̄1 := diag(F̄1,1, · · · , F̄1,h)

= diag(v1,1, · · · ,v1,h)diag(1T1,1, · · · ,1T1,h)

=: V1U1

In the same way, we have assumed that F2,i(X
1) is a regular stochastic matrix

for any i ∈ I2 and any X1 ∈ Ωd1 . Thus,

lim
k→∞
Fk2,i(X1) = F̄2,i(X

1) = v2,i(X
1)1T , ∀X1 ∈ Ωd1 ,

where 1T and v2,i(X
1) are, respectively, the left and right eigenvectors associated

to the eigenvalue 1 such that 1Tv2,i(X
1) = 1. We define

(1.49)

F̄2(X1) := diag(F̄2,h+1(X1), · · · , F̄2,q(X
1))

= diag(v2,h+1(X1), · · · ,v2,q(X
1))diag(1T1,1, · · · ,1T1,h)

=: V2(X1)U2

Proposition 1.3.1 Assume that the entries of matrix F2(·) ∈ C1(Ωd1) are
continuous functions of X1 ∈ Ωd1 . Then, the entries of matrix F̄2(·) are
continuous functions of X1 ∈ Ωd1 too. Assuming previous settings for every
X = (X1, X2) ∈ ΩN the pointwise limit of the sequence {F (k)(X)} exists:

F̄ (X) := lim
k→∞

F (k)(X) =

(
F̄1 0
0 F̄2

(
F̄1X

1
) )( X1

X2

)
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Proof.– From the expression of F (k)(X) and the definitions of F̄1 and F̄2 the
only fact remaining to be proved is that
(1.50)

lim
k→∞
F2

(
Fk−1

1 X1
)
· F2

(
Fk−2

1 X1
)
· . . . · F2

(
F1X

1
)
· F2

(
X1
)

= F̄2

(
F̄1X

1
)

Unless otherwise stated the matrix norm that we use is the 1-norm, i.e., for any

matrix A = (aij)
n
i,j=1, ‖A‖ = sup

j=1,...,n

n∑
i=1

|aij|. If A is stochastic then ‖A‖ = 1

and if A and B are both stochastic they verify ‖A−B‖ ≤ 2. From theorem 1.2
in [93] we get that

(1.51) ‖Fk1 − F̄1‖ = o(γk)

for any γ such that |λ2| < γ < 1, being λ2 the subdominant eigenvalue of matrix
F1. The fact that F2(·) ∈ C1(Ωd1) implies that there exist a constant M > 0
such that

(1.52) ‖F2

(
Fk1X1

)
−F2

(
F̄1X

1
)
‖ ≤M‖Fk1 − F̄1‖

And, thus, from (1.51) and (1.52) we obtain that for any ε′ > 0 there exist k′0
such that for every k ≥ k′0 we have

(1.53) ‖F2

(
Fk1X1

)
−F2

(
F̄1X

1
)
‖ ≤ ε′γk

We also have that

(1.54) lim
k→∞
‖Fk2

(
F̄1X

1
)
− F̄2

(
F̄1X

1
)
‖ = 0

and, thus, for any ε′′ > 0 we can choose k′′0 such that for every k ≥ k′′0 it holds
that

(1.55) ‖Fk2
(
F̄1X

1
)
− F̄2

(
F̄1X

1
)
‖ < ε′′

Now, with the help of (1.53) and (1.55), let us prove (1.50): For any ε > 0, let
k′0 and k′′0 be the positive integers for which taking, respectively, ε′ = (1−γ)ε/2
and ε′′ = ε/6 we have that (1.53) and (1.55) hold, and choose k0 = k′0 + k′′0 .
The proof will be finished as soon a we show that for any k ≥ k0 we have that
(1.56)
‖F2

(
Fk−1

1 X1
)
F2

(
Fk−2

1 X1
)
· · · F2

(
F1X

1
)
F2

(
X1
)
− F̄2

(
F̄1X

1
)
‖ < ε
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To simplify notations let us call Fk = F2

(
Fk−1

1 X1
)
, F = F2

(
F̄1X

1
)

and
F̄ = F̄2

(
F̄1X

1
)
. With this notation the first term in (1.56) become:∥∥Fk · Fk−1 · . . . · F1 − F̄

∥∥
≤
∥∥Fk · Fk−1 · . . . · F1 −Fk

∥∥+
∥∥Fk − F̄∥∥

≤ ‖Fk · Fk−1 · . . . · F1 −F · Fk−1 · . . . · F1‖
+
∥∥F · Fk−1 · . . . · F2 · F1 −Fk

∥∥+
∥∥Fk − F̄∥∥

≤ ‖Fk −F‖+
∥∥F · (Fk−1 · . . . · F2 · F1 −Fk−1

)∥∥+
∥∥Fk − F̄∥∥

≤ · · · ≤

≤
k∑

s=k−k′′0 +1

‖Fs −F‖+
∥∥∥Fk′′0 · (Fk−k′′0 · . . . · F2 · F1 −Fk−k

′′
0

)∥∥∥
+
∥∥Fk − F̄∥∥
≤

k∑
s=k−k′′0 +1

ε′γs +
∥∥∥(Fk′′0 − F̄) ·

(
Fk−k′′0 · . . . · F2 · F1 −Fk−k

′′
0

)∥∥∥
+
∥∥F̄ · (Fk−k′′0 · . . . · F2 · F1 −Fk−k′′0

)∥∥+ ε′′

≤ ε′

1− γ + 2ε′′ + 0 + ε′′ = ε.

�

As a direct consequence of proposition 1.3.1, we get the corresponding auxiliary
system

Xn+1 = S ◦ F̄ (Xn) = S
(
F̄1X

1
n, F̄1(F̄1X

1
n)X2

n

)
Next, we build up an aggregated system for system (1.46) decomposing F̄ (X) as
hypothesis 1 prescribes. Namely, thanks to (1.48) and (1.49), we define functions

G(X) :=
(
U1X

1,U2X
2
)
∈ Rh × Rq−h

and

E(Y ) :=
(
V1Y

1,V2(Y 1)Y 2
)
∈ Rd1 × Rd2
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From (1.48) and (1.49) we obtain that

F̄ (X) =
(
V1U1X

1,V2(X1)U2X
2
)
.

We Define global variables as

(1.57) Y = (Y 1, Y 2) = G(X) =
(
U1X

1,U2X
2
)
,

we note Ωq := (U1 U2)ΩN and, finally, we get the aggregated system

(1.58) Yn+1 =
(
U1 U2

)
S
(
V1Y

1
n ,V2(Y 1

n )Y 2
n

)
We recall that the aggregated system is a q-dimensional one, while the complete

system is of dimension N , with N > q. In order to apply theorem 1.1.7 to system
(1.46) we focus now in proving that F (X) verifies hypothesis 1.1.8. We need to
prove that limits

(1.59) lim
k→∞

F (k)(X) = F̄ (X)

and

(1.60) lim
k→∞

DF (k)(X) = DF̄ (X)

are uniform on compact sets of ΩN .

Proposition 1.3.2 Under the previous conditions, limit (1.59) is uniform on
compact sets of ΩN .

Proof.– It is a consequence of proposition 1.3.1. Getting back to the proof (and
notation) of that proposition, we just need to prove that k′0 and k′′0 can be chosen
independently of X ′ ∈ K1 where K1 is the projection on Rd1 of the compact set
K ∈ ΩN .

The fact that
∞⋃
k=0

{Fk1X1 : X1 ∈ K1} is bounded, due to the convergence of

{Fk1X1}, implies that we can choose a unique M in (1.52) valid for any X1 ∈ K1

and thus the same holds for k′0 in (1.53). Concerning k′′0 , we notice that

‖Fk+1
2

(
F̄1X

1
)
− F̄2

(
F̄1X

1
)
‖

= ‖Fk+1
2

(
F̄1X

1
)
− F̄2

(
F̄1X

1
)
· F2

(
F̄1X

1
)
‖

≤ ‖Fk2
(
F̄1X

1
)
− F̄2

(
F̄1X

1
)
‖ · ‖F2

(
F̄1X

1
)
‖

= ‖Fk2
(
F̄1X

1
)
− F̄2

(
F̄1X

1
)
‖
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and so {‖Fk2
(
F̄1X

1
)
− F̄2

(
F̄1X

1
)
‖}k∈N is a non increasing sequence of con-

tinuous functions defined on a compact set K1 and converging pointwise to the
continuous function 0, what implies its uniform convergence.

�

In order to prove that limit (1.60) is uniform on compact sets we first calculate
the Jacobian matrices of functions F̄ (X) and F (k)(X); that is

JF̄ (X) =

(
F̄1 0

JX1

(
F̄2(F̄1X

1)X2
)

F̄2(F̄1X
1)

)

JF (k)(X) =

 F k
1 0

JX1

(
k−1∏
j=0

F2(Fk−j−1
1 X1)X2

)
k−1∏
j=0

F2(Fk−j−1
1 X1)


Comparing those expressions and thanks to proposition 1.3.2, the only thing we
need to prove is that

(1.61) lim
k→∞

JX1

(
k−1∏
j=0

F2(Fk−j−1
1 X1)X2

)
= JX1

(
F̄2(F̄1X

1)X2
)

is uniform on compact sets. There is some previous work to be done before
proceeding;

Lemma 1.3.3 Given a matrix function A(X1), it follows that

JX1

(
A(X1)X2

)
is a matrix of dimension d2 × d1 such that each column j = 1, · · · , d1 is of the
form

∂
∂x1j

(
A(X1)

)
X2

where we use the notation X1 = (x1
1, · · · , x1

d1
).

Proof.– Straightforward calculations yield the result.

�

Lemma 1.3.4 Let Ωd1 ⊂ Rd1 be an open bounded nonempty set and M(·) ∈
C2(Ωd1) be a matrix function such that for each X1 ∈ Ωd1 , M(X1) is a regular
stochastic matrix, v(X1) > 0 be the unique eigenvector of matrix M(X1)
associated to eigenvalue 1 that verifies 1Tv(X1) = 1 and v(X1)1T = M̄(X1).
Then,
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1. Vector v(X1) and matrix M̄(X1) are functions of class C2(Ωd1).

2. Limit
lim
k→∞

(M(X1))k = M̄(X1)

is uniform on compact sets of Ωd1 , where the super index k stands for the
powers of M(X1).

3. Limit
lim
k→∞

∂
∂x1j

(
M(X1)

)k
= ∂

∂x1j
M̄(X1)

is uniform on compact sets of Ωd1 for j = 1, · · · , s.

Proof.– It follows easily from those of lemma 1.2.1 and proposition 1.2.2.

�

In order to keep the exposition as clear as possible, an without lost of generality,
we assume from now on that matrix F2 consists on a single block. We recall
that function matrix F2(·) ∈ C2(Ωd1). Using lemma 1.3.4 we already know that
function matrix F̄2(·) ∈ C2(Ωd1). Consider the Jordan form to matrix F2(X1),
it follows that

(1.62)
F2(X1) = (v(X1)|R2(X1))

(
1 O
O H2(X1)

)(
1T

S2(X1)

)
= F̄2(X1) +Q(X1),

where

(1.63) Q(X1) := R2(X1)H2(X1)S2(X1) = F2(X1)− F̄2(X1),

R2(X1) and S2(X1) are suitable matrices and H2(X1) corresponds with the
Jordan blocks of F2(X1) associated to eigenvalues of modulus strictly smaller
than 1. We recall that

ρ(Q(X1)) < 1,

where ρ stands for the spectral radius. Besides, from its definition, matrix func-
tion Q(·) ∈ C2(Ωq). It is clear that columns of F2(X1) and F̄2(X1) sum 1 and
therefore, from equation (1.62) any column of Q(X1) sums up to 0. Then, it is
straightforward that

F̄2(X1)F̄2(X1) = F̄2(X1), F̄2(X1)Q(X1) = 0,

in particular matrix F̄2j is idempotent.
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Lemma 1.3.5 Let Q(·) ∈ C2(Ωd1) be a matrix function defined in (1.63). Let
K1 ⊂ Rd1 be a compact set such that Fk1K1 is in the domain of Q for k =
0, 1, 2, · · · . Then, there exist a positive constants C > 0, β ∈ (0, 1) and positive
integer m0 > 0 such that for all X1 ∈ K1 and for all k ≥ p ≥ m0 it follows that

‖Q(Fk1X1)Q(Fk−1
1 X1) · · · Q(Fp1X1)‖ ≤ Cβk−p+1

Proof.– Let us define

K̄1 := Cl
{
F j1X1; X1 ∈ K1, j = 0, 1, 2, · · ·

}
,

where Cl(X ) stands for the clausure of X . The spectral radius of a matrrix
depends contiunuosly on the coefficients of this matrix. Thus, there exists

max
X1∈K̄1

ρ
(
Q(X1)

)
= β̂

and we can choose β ∈ (β̂, 1). On the other hand, for each X1 ∈ K̄1 a norm
‖ · ‖X1 exists such that

‖Q(X1)‖X1 < β

and, because of the continuity of the norm, there exists δX1 > 0 such that

‖X1 − Y 1‖ < 2δX1 ⇒ ‖Q(Y 1)‖X1 < β.

Let us note
VX1 :=

{
Y 1 ∈ K̄1; ‖X1 − Y 1‖ < δX1

}
.

Then, = {VX1}Y 1∈K̄1 is a open covering of the compact set K̄1 so that we can
choose a finite subcovering, that is

K̄1 ⊂ VX1
1
∪ · · · ∪ VX1

k
.

We define
δ := min

{
δX1

1
, · · · , δX1

k

}
and we chose an integer m0 > 0 such that for all m ≥ m0

max
X1∈K̄1

‖F̄1X
1 −Fm1 X1‖ < δ.

Given X1 ∈ K1 there exists j ∈ {1, · · · , k} such that F̄1X
1 ∈ VX1

j
; therefore,

for each m ≥ m0 it follows that

‖Fm1 X1 −X1
j ‖ ≤ ‖Fm1 X1 − F̄1X

1‖+ ‖F̄1X
1 −X1

j ‖ < δ + δX1
j
≤ 2δX1

j
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and
‖Q(Fm1 X1)‖X1

j
< β.

From the last inequality, we get that

‖Q(Fk1X1)Q(Fk−1
1 X1) · · · Q(Fm1 X1)‖X1

j
≤ βk−p+1

for all k ≥ p ≥ m0, X1 ∈ K1 such that F̄1X
1 ∈ VX1

j
. Finally, because of the

equivalence of norms, there exists C > 0 such that

‖ · ‖1 ≤ C‖ · ‖X1
j

∀ j = 1, · · · , k

which finishes the proof.

�

Lemma 1.3.6 There exist constants πj > 0, for j ∈ {1, · · · , xd1} such that

sup
k ∈ N

X1 ∈ K1

∥∥∥∥∥ ∂
∂x1j

k−1∏
j=0

F2(Fk−j−1
1 X1)

∥∥∥∥∥
1

= πj

Proof.– Let us introduce some notation which will be kept up to the end of
these chapter:

Fj ≡ F2(F j−1
1 X1), F̄j ≡ F̄2(F j−1

1 X1), Qj ≡ Fj − F̄j,

Pk(X1) ≡
k−1∏
j=0

F2(Fk−j−1
1 X1) = Fk · · · F1 and Pj,k := Fk · · · Fj

We ward that with this notation, when j = 2, F2(F j−1
1 X1) is noted by F2,

which should be not confussed with F2(·) defined in (1.44). For a fixed integer
m0 ≥ 0 it is straightforward that

Pk = Pm0+1,kPm0 ,

which yields

∂
∂x1j
Pk = ∂

∂x1j
(Pm0+1,k)Pm0 + Pm0+1,k

∂
∂x1j
Pm0

so that ∥∥∥ ∂
∂x1j
Pk
∥∥∥

1
≤
∥∥∥ ∂
∂x1j
Pm0+1,k

∥∥∥
1

+
∥∥∥ ∂
∂x1j
Pm0

∥∥∥
1
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We also have,

Pk ≡ F2(Fk−1
1 X1)F2(Fk−2

1 X1) · · · F2(X1) ∈ C1(K1),

therefore, there exists

sup
X1∈K1

∥∥∥ ∂
∂x1j
Pm0(X

1)
∥∥∥

1
:= Dm0 .

Moreover, keeping in mind that F̄jF̄i = F̄j and F̄jQi = 0 for any i, j =
0, 1, 2, · · · , it follows that

Pm0+1,k = Pk · · · Pm0+1 = (P̄k +Qk) · · · (P̄m0 +Qm0)

= F̄k +QkF̄k−1 +QkQk−1F̄k−2 + · · ·

+QkQk−1 · · · Qm0+2F̄m0+1 +QkQk−1 · · · Qm0+1.

As functions F̄2(·) and Q(·) are of class C2, there exist constants DF̄ and DQ
such that

sup
X1∈K1

∥∥∥ ∂
∂x1j
F̄2(X1)

∥∥∥
1

:= DF̄ and sup
X1∈K1

∥∥∥ ∂
∂x1j
Q(X1)

∥∥∥
1

:= DQ.

Then, it follows that∥∥∥ ∂
∂x1j
Pm0+1,k

∥∥∥
1
≤
∥∥∥ ∂
∂x1j
F̄k
∥∥∥

1
+
∥∥∥ ∂
∂x1j
Qk
∥∥∥

1
+ ‖Qk‖1

∥∥∥ ∂
∂x1j
F̄k−1

∥∥∥
1

+
∥∥∥ ∂
∂x1j

(QkQk−1)
∥∥∥

1
+ ‖QkQk−1‖1

∥∥∥ ∂
∂x1j
F̄k−2

∥∥∥
1

· · ·

+
∥∥∥ ∂
∂x1j

(Qk...Qm0+2)
∥∥∥

1
+ ‖Qk...Qm0+2‖1

∥∥∥ ∂
∂x1j
F̄m0+1

∥∥∥
1

+
∥∥∥ ∂
∂x1j

(QkQk−1...Qm0+1)
∥∥∥

1

≤ DF̄2
(1 + ‖Qk‖1 + ‖QkQk−1‖1 + · · ·+ ‖Qk...Qm0+2‖1)

+
∥∥∥ ∂
∂x1j
Qk
∥∥∥

1
+ · · ·+

∥∥∥ ∂
∂x1j

(QkQk−1...Qm0+1)
∥∥∥

1
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Let us point out that∥∥∥ ∂
∂x1j

(QkQk−1...Qj)
∥∥∥

1
=
∑k

i=j

∥∥∥Qk...Q1−1
∂
∂x1j

(Qi)Qi+1...Qj
∥∥∥

1

≤∑k
i=j ‖Qk...Q1−1‖1

∥∥∥ ∂
∂x1j
Qi
∥∥∥

1
‖Qi+1...Qj‖1.

Therefore, thanks to lemma 1.3.5 we get that∥∥∥ ∂
∂x1j

(QkQk−1...Qj)
∥∥∥

1
≤ (k − j + 1)Cβk−iDQCβi−j = (k − j + 1)C2DQβk−j.

Thus, lemma 1.3.5 implies that∥∥∥ ∂
∂x1j
Pm0+1,k

∥∥∥
1
≤ DF̄2

(1 + Cβ + bβ2 + · · ·+ Cβk−m0−1)

+(k − j + 1)C2DQβk−j

which is bounded from above for all k ≥ m0 and for all X1 ∈ K1. So there exists

Dm0+1,k := sup
k ∈ N

X1 ∈ K1

∥∥∥ ∂
∂x1j
Pm0+1,k

∥∥∥
1

and πj ≤ Dm0 +Dm0+1,k.

�

Proposition 1.3.7 Under the previous conditions along with F2(·) ∈ C2(Ωq),
limit (1.60) is uniform on compact sets of ΩN .

Proof.– Let us fix ε > 0 and let K be a compact subset of ΩN . Using the
notation introduced in lemma 1.3.6, we have that

F̄X2 − PkX2 =
(
F̄X2 −FkX2

)
+
(
FkX2 − PkX2

)
So, having in mind (1.61), lemma 1.3.3 and the fact that X2 varies on a compact
set we just need to prove that

(1.64) lim
k→∞

∂
∂x1j

(
F̄ − Fk

)
= 0

and

(1.65) lim
k→∞

∂
∂x1j

(
Fk − Pk

)
= 0
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uniformly on K1 :=
{
X1 ∈ Rd1 ; ∃X2 ∈ Rd2 such that (X1, X2) ∈ K

}
.

Limit (1.64) follows immediately from lemma 1.3.4. Therefore, there exists
k̂ ≥ 0 such that for all k ≥ k̂

sup
X1∈K1

∥∥∥ ∂
∂x1j
F̄ − ∂

∂x1j
Fk
∥∥∥ < ε

2
, ∀X1 ∈ K1

On the other hand, regarding limit (1.65), we note that

Fk − Pk = FFk−1 −FPk−1 + FPk−1 −FkPk−1

= F
(
Fk−1 − Pk−1

)
+ (F − Fk)Pk−1

= F
(
F
(
Fk−2 − Pk−2

)
+ (F − Fk−1)Pk−2

)
+ (F − Fk)Pk−1

= F2
(
Fk−2 − Pk−2

)
+ F (F − Fk−1)Pk−2 + (F − Fk)Pk−1

= F3
(
Fk−3 − Pk−3

)
+ F2 (F − Pk−2)Pk−3

+F (F − Fk−1)Pk−2 + (F − Fk)Pk−1

= Fα
(
Fk−α − Pk−α

)
+
∑α

j=1F j−1 (F − Pk−j+1)Pk−j

=
(
Fα − F̄

) (
Fk−α − Pk−α

)
+
∑α

j=1F j−1 (F − Pk−j+1)Pk−j

Thus;
∂
∂x1j

(
Fk − Pk

)
= ∂

∂x1j

(
Fα − F̄

) (
Fk−α − Pk−α

)
(1.66)

+
(
Fα − F̄

)
∂
∂x1j

(
Fk−α − Pk−α

)
(1.67)

+
α∑
j=1

∂
∂x1j

(
F j−1

)
(F − Fk−j+1)Pk−j(1.68)

+
α∑
j=1

F j−1 ∂
∂x1j

(F − Fk−j+1)Pk−j(1.69)

+
α∑
j=1

F j−1 (F − Fk−j+1) ∂
∂x1j
Pk−j(1.70)
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In the sequel we will show that there exists k̃ ≥ 0 such that for all k ≥ k̃ each
of the expression (1.66) up to (1.70) is bounded from above by ε/10:

1. It is straightforward that∥∥∥ ∂
∂x1j

(
Fα − F̄

) (
Fk−α − Pk−α

)∥∥∥ ≤ 2
∥∥∥ ∂
∂x1j

(
Fα − F̄

)∥∥∥
and lemma 1.3.3 yields the existence of k1 ≥ 0 such that for all k ≥ k1∥∥∥ ∂

∂x1j

(
Fα − F̄

)∥∥∥ < ε

20
, ∀X1 ∈ K1.

2. Regarding addend (1.67), reasoning as in lemma 1.3.6 it follows the exis-
tence of

φj := sup
k ∈ N

X1 ∈ K1

∥∥∥ ∂
∂x1j
Fk−α

∥∥∥
1

Then,∥∥∥(Fα − F̄) ∂
∂x1j

(
Fk−α − Pk−α

)∥∥∥ ≤ (φj + πj)
(
Fk−α − Pk−α

)
and it is straightforward that there exists k2 ≥ 0 such that for all k ≥ k2∥∥∥(Fα − F̄) ∂

∂x1j

(
Fk−α − Pk−α

)∥∥∥ < ε

10
, ∀X1 ∈ K1.

3. We deal now with (1.68); it is straightforward that∥∥∥∥∥
α∑
j=1

∂
∂x1j

(
F j−1

)
(F − Fk−j+1)Pk−j

∥∥∥∥∥ ≤ φj

α∑
j=1

‖F − Fk−j+1‖ .

From the fact that Fk1 → F̄1 uniformly on compact sets we get the exis-
tence of k3 ≥ 0 such that for all k ≥ k3∥∥∥∥∥

α∑
j=1

∂
∂x1j

(
F j−1

)
(F − Fk−j+1)Pk−j

∥∥∥∥∥ < ε

10
, ∀X1 ∈ K1.

4. For dealing with (1.69) we recall that F2(·) ∈ C2(Ωq) and that K1 is com-
pact; therefore, there exists Lipschitz constants Lj for the partial deriva-
tives of F2(·); namely∥∥∥ ∂

∂x1j
F2(X1

1 )− ∂
∂x1j
F2(X1

2 )
∥∥∥ ≤ Lj‖X1

1 −X1
2‖.
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As a consequence:∥∥∥∥∥
α∑
j=1

F j−1 ∂
∂x1j

(
Fk −Fk−j+1

)
Pk−j

∥∥∥∥∥ ≤
α∑
j=1

∥∥∥ ∂
∂x1j
F − ∂

∂x1j
Fk−j+1

∥∥∥
≤ L

α∑
j=1

‖F̄1 −Fk−j+1
1 ‖.

where L := max {L1, · · · , Ld1}. Reasoning as we did when dealing with
(1.68), we get the existence of k4 ≥ 0 such that for all k ≥ k4∥∥∥∥∥

α∑
j=1

F j−1 ∂
∂x1j

(
Fk −Fk−j+1

)
Pk−j

∥∥∥∥∥ < ε

10
.

5. The fact the norm of (1.70) is bounded from above by ε/10, which follows
arguing in a similar way as we did for (1.68) which yields the corresponding
integer k5.

Therefore, choosing k ≥ k̃ = max {k1, · · · , k5} it follows that

sup
X1∈K1

∥∥∥ ∂
∂x1j
Fk − ∂

∂x1j
Pk
∥∥∥ < ε

2

Then, for each ε > 0 there exists k∗ ≥ max
{
k̂, k̃
}

such that

sup
K

∥∥∥ ∂
∂x1j
F̄X2 − ∂

∂x1j
PkX2

∥∥∥ < ε

2
+
ε

2
= ε

for every k ≥ k∗, which finishes the proof.

�

After proving that function F defined in (1.2) verifies hypotheses 1.1.4 and 1.1.8,
theorem 1.1.7 yields the following result that allows to study some asymptotic
behaviors of system (1.46) in terms of the aggregated system (1.58).

Theorem 1.3.8 Consider the general two time scales system (1.46) given by

Xk,n+1 = S
(
Fk1X1

k,n, F2

(
Fk−1

1 X1
k,n

)
. . .F2

(
F1

1X
1
k,n

)
F2

(
X1
k,n

)
X2
k,n

)
where X = (X1, X2) ∈ ΩN , ΩN ⊂ RN is an open bounded nonempty set,
X i ∈ Ωdi ⊂ Rdi , Ωdi is the restriction of ΩN to Rdi for i = 1, 2, S ∈ C1(ΩN)
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and matrices F1 and F2(·) ∈ C2(Ωd1) are those defined by (1.43) and (1.44).
Consider as well the corresponding aggregated system (1.58) that we have derived
in the previous paragraphs

Yn+1 =
(
U1 U2

)
S
(
V1Y

1
n ,V2(Y 1

n )Y 2
n

)
where U1 and V1 were defined in (1.48) and U2, V2(·) were defined in (1.49) and
Y stands for the global variables defined in (1.57). Let Y∗ ∈ Ωq be a hyperbolic
equilibrium point of system (1.58) with Y ∗ = (Y 1

∗ , Y
2
∗ ) ∈ Rh × Rq−h. Then,

there exist a positive constant r > 0 and an integer k0 ≥ 0 such that for all
k ≥ k0 it follows that

1. X∗ := (V1Y
1
∗ ,V2(Y 1

∗ )Y 2
∗ ) is an hyperbolic equilibrium of the corresponding

auxiliary system. Moreover, system (1.46) has an unique equilibrium point
X∗k ∈ B̄(X∗; r) which is hyperbolic and satisfies

lim
k→∞

X∗k = X∗,

where B̄(X∗; r) =
{
Z ∈ RN ; ‖X∗ − Z‖ ≤ r

}
.

2. X∗ and X∗k are asymptotically stable (resp. unstable) if and only if Y ∗ is
asymptotically stable (resp. unstable).

3. Let Y ∗ be asymptotically stable and let (X1
0 , X

2
0 ) ∈ ΩN be such that the

solution {Yn}n=0,1,... of system (1.58) corresponding with the initial data
Y0 := (U1X

1
0 ,U2X

2
0 ) satisfies that limn→∞ Yn = Y ∗. Then, there exists

k1 ≥ 0 such that for each k ≥ k1, the solution of system (1.46) with initial
value Xk,0 = X0 satisfies that

lim
n→∞

Xk,n = X∗k .

1.3.2 A host-parasitoid model with density-dependent
dispersal in a chain of patches.

In this section we present a time discrete spatial host-parasitoid model. The
environment is a chain of patches connected by migration events. Local host-
parasitoid interactions are described by the classical Nicholson-Bailey model. The
patches are assumed to be close enough to support the assumption of frequent
patch to patch migration with respect to local interactions.

Since the pioneers works of Comins [27] and Hassell [42], the study of spatial
dynamics of host-parasitoid associations has received a lot of attention (see [22]
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for a review). At the landscape level, hosts and parasitoids can frequently move
from a favorable patch to another one. French and Travis [100] suggested that
parasitoids are able to disperse more than once during the dispersal period, and
can therefore ”compare” host densities of several patches. Most parasitoids
and hosts are sensitive to chemical products (pheromones) whose detectability
depends on the density of organisms that are locally present (see [100] and
[104]). When the density of host is high on a given patch, parasitoids should
rather remain on that patch than move to another one. It is thus important to
incorporate density dependent dispersal of organisms into models. We assume
the following; when host density is small (resp. high) at a given patch, the
proportion of parasitoids leaving this patch is close to unity (resp. to zero).

Sebsequently we combine these processes evolving in different time scales to
build up a two time scales discrete model matching with system (1.46). Thus, we
apply the aggregation result stated in this section to obtain a reduced model that
governs the total host and parasitoid densities. Then, we analyze the aggregated
system in order to obtain information about the original model.

Building up the model.

We consider a host-parasitoid system in a spatial environment which is a chain of
q patches. Let hi,n and pi,n be, respectively, the host and parasitoid density on
patch i, i ∈ {1, · · · , q} at each generation n. We define the population vector
as follows

Xn = (h1,n, h2,n, ..., hq,n, p1,n, p2,n, ..., pq,n)T = (Hn, Pn)T

where the upper index T denotes, as usual, transposition. The complete model
couples migrations between patches as well as local host-parasitoid interactions.
In the sequel, we will write down equations describing both processes.

Host-parasitoid dispersal submodel.

We assume that individuals can move over a distance of k patches at each gen-
eration, in a diffusion-like dispersal process. In order to compute the distribution
obtained for hosts and parasitoids, we discretize this process in time and de-
compose it into k elementary dispersal events consisting in movements from one
patch to one of its nearest neighbors.

In case of pure random walk, insects starting on a patch would be distributed
according to a Gaussian distribution centered on this particular patch after disper-
sal. In the present model, hosts move according to an asymmetrical dispersal pro-
cess, a biased random walk, while parasitoids dispersal is host density-dependent.
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· · ·1 2 A

Figure 1.3: Chain of patches.

Host movements correspond to an asymmetric (biased) random walk: prob-
abilities to go to the left or to the right patch are not the same. Let f be the
proportion of hosts moving from any patch to the neighboring patch situated
on its left between two time steps of migration. We define parameter α > 0
and assume that the proportion of migrants from any patch to the neighboring
patch on its right is αf at each elementary dispersal event. When α > 1, the
proportion of hosts moving to the right is larger than in the opposite direction.
Thus, after several elementary migration events, one expects to end up with a
spatial host distribution shifted towards the right hand side of the chain. On the
contrary, when α < 1, the proportion of hosts moving to the left is larger than in
the opposite direction and one expects a spatial host distribution shifted towards
the left. The proportion of hosts leaving a patch to go to left and right ones
must be smaller than 1, and thus we assume that (1 + α)f < 1.

· · ·2 A1

· · ·2 A1

αf αf αf

f f f

g/2 g/2 g/2

g/2g/2g/2

Figure 1.4: Chain of patches and migration scheme.

For parasitoids we assume a host density-dependent dispersal process. Dis-
persal corresponds to a random walk, but the probability of leaving the patch
(and thus the proportion of migrants) depends on the density of hosts on that
patch. Parasitoids may use chemical stimuli from their hosts. Host stimuli are
highly reliable but not very detectable. In this model, if the parasitoid is unable
to detect the presence of hosts thanks to the pheromones left by hosts, it will
leave the patch. In our model, if the parasitoid is unable to detect the presence
of hosts, it will leave the patch. Thus the density of hosts on a patch directly
affects the proportion of migrants that will stay on that patch, as this proportion
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is related to the probability to find hosts pheromones which increases with density
of hosts. Let g(hi,n) be the proportion of parasitoids leaving any patch i to go
to the two neighboring patches at each elementary dispersal event, which only
depends on the density of hosts on patch i at time step n. In this study, g(hi,n)
is given by a general classical type of function of the following form:

(1.71) g(hi,n) =
1

1 + τhβi,n

where τ and β are positive parameters. A similar host density dependent disper-
sal process for parasitoids was used in the case of two spatial patches in Lett et
al. (2003). Here, we extend the model to a chain of any number of patches.

Curves obtained for different values of β intersect at
(
h = (1/τ)

1
β , g = 0.5

)
figure 1.5 shows function g(hi,n) for τ = 1 and different values of β. As mod-
ifying parameter corresponds to changing scale for hosts, we will assume that
τ = 1 in all this study. The main idea in equation (1.71) is that when many

Figure 1.5: The proportion g of migrant parasitoids as a function of host
density h, for τ = 1 and different values of parameter β.

hosts are available on patch i, parasitoids remain on this patch. On the contrary,
when few hosts are present there, parasitoids leave the patch. This shift in the
parasitoid behavior (stay or leave) is all the more ”brutal” than β is large. We
will later study the influence of β on the model.

We assume that parasitoids leaving patch i go in equal proportions to the two
neighbouring patches. Then for any patch 1 < i < q, the elementary dispersal

61



Chapter 1 Discrete dynamical systems.
1.3 Fast dynamics depending on some state variables

process reads as follows:

(1.72)

hi,n+1 = [1− (1 + α)f ]hi,n + αfhi−1,n + fhi+1,n

pi,n+1 = [1− g(hi,n)]pi,n +
1

2
g(hi−1,n)pi−1,n +

1

2
g(hi+1,n)pi+1,n

and for patches at both ends of the chain

(1.73)



h1,n+1 = [1− αf ]h1,n + fh2,n

p1,n+1 = [1− 1

2
g(h1,n)]p1,n +

1

2
g(h2,n)p2,n

hq,n+1 = [1− f ]hq,n + αfhq−1,n

pq,n+1 = [1− 1

2
g(hq,n)]pq,n +

1

2
g(hq−1,n)pq−1,n

The elementary dispersal process can be therefore described by the following
system:

Xn+1 = F (Xn).

We recall that, right here, the time unit n 7→ n + 1 corresponds to the fast
dynamics. Function F is a block diagonal matrix noted by:

(1.74) F (Xn) := F(Xn)Xn =

(
Fh 0
0 Fp(Hn)

)(
Hn

Pn

)

Summing up equations (1.72) and (1.73), we get matrix Fh ∈Mq×q(R), which
stands for host migrations and is given by

(1.75) Fh =



1− αf f 0 · · · · · · 0

αf 1− (1 + α)f f
. . . · · · 0

0
. . . . . . . . . . . .

...
...

. . . . . . . . . 0 0
...

. . . . . . αf 1− (1 + α)f f
0 · · · · · · 0 αf 1− f


On the other hand, matrix Fp(Hn) ∈Mq×q(C1(R)) defines parasitoid migrations
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according to equations (1.72) and (1.73) as well, namely,

(1.76) Fp(Hn) =



1−
g(h1,n)

2

g(h2,n)

2
0 · · · · · · 0

g(h1,n)

2
1− g(h2,n)

g(h3,n)

2

. . . · · · 0

0
. . .

. . .
. . .

. . .
.
.
.

.

.

.
. . .

. . .
. . . 0 0

.

.

.
. . .

. . .
g(hq−2,n)

2
1− g(hq−1,n)

g(hq,n)

2

0 · · · · · · 0
g(hq−1,n)

2
1−

g(hq,n)

2



As dispersal is the fast process, we will allow k migrations within each single
slow time unit. It follows from equation (1.75) that host migrations matrix does
not change during migration process. Parasitoids migration matrix changes with
each hosts migration, as shown in equation (1.76). Let us note the migration
matrix after k elementary dispersal process as follows:

(1.77) Xn+1 = F (k)(Xn)

where F (k)(Xn) is recursively defined by:

F (k)(Xn) :=


F(Xn)Xn for k = 1

F(F (k−1)(Xn))F (k−1)(Xn) for k > 1

This model is a discrete version of a reaction-diffusion model with a parasitoid
diffusion coefficient depending on the host population density. Such a model
has been developed in the continuous case (see 9.3 in Mathematical Biology by
J.D. Murray [70]). In our model, the parameter k corresponds to the speed of
the diffusion process and thus the diffusion coefficient. The parameter k is also
the radius of the distribution after dispersal. This allows the model to be more
flexible than models considering only migration on the nearest neighbors: patch
sized can be chosen arbitrary small compared to the distance insects can travel
in one generation, thus it would not be relevant to prevent individuals for mov-
ing farther. Furthermore, multiple host density-dependent elementary dispersal
events allow parasitoid to leave the patch if no hosts are present, preventing the
unrealistic case where parasitoids would stay on an empty patch. In addition,
this migration model is less extreme than Ideal Free Distribution, which does
not describe the intrinsic process of dispersal, allowing individuals to reach any
patch in the environment, regardless of their mobility. In our model, the disper-
sal process is explicit with respect to several contributions in which the dispersal
process is not described, and where hosts and parasitoids are distributed among
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spatial patches according to some given distributions (Hassell and May, [43], [44];
Hassell et al. [45]). In our model, the parameter k allows to make the diffusion
process more or less fast, which would correspond in the continuous case to
increase or decrease of the diffusion coefficient.

Local interactions: host-parasitoid dynamics.

On each patch i ∈ 1, · · · , q of the chain, we assume that hosts and parasitoids
interact according to the Nicholson Bailey model

(1.78)

{
hi,n+1 = λihi,ne

−aipi,n = zi (hi,n, pi,n)

pi,n+1 = cihi,n
(
1− e−aipi,n

)
= ki (hi,n, pi,n)

where λi is the host growth rate on patch i, ai the searching efficiency of para-
sitoids and ci the average number of viable parasitoids that emerge from an host
parasitized at the previous generation. Let us define a map S : R2q → R2q

through S = (z1, · · · , zq, k1, · · · , kq), where where functions zi and ki, for
i ∈ {1, · · · , q}, are defined by equation (1.78) and describe the local host-
parasitoid interactions.

The complete model.

The complete model combines the two previous submodels as follows:

(1.79) Xn+1 = S ◦ F (k)(Xn)

We consider the slow time scale for this model: one time step corresponds to a
single event of reproduction, and thus one generation. Therefore, it is assumed
that between time n and n+1 hosts and parasitoids first explore the environment
by performing k elementary dispersal events before settling down, then they
enter a phase where they have local demographic and parasitism interactions.
Local interactions occur at the same time on every patch. Thus, all patches
are synchronized. This model matches with (1.46), so that we can apply the
aggregation results stated early.

The reduced model.

It is straightforward that theorem 1.3.8 applies to system (1.79). Thus, we can
study the complete system (1.79) by means of a reduced one. Direct calculations
show that global variables are given by the total number of host and parasitoids

h = h1 + · · ·+ hq p = p1 + · · ·+ pq.
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1.3.2 Host parasitoid model with density-dependent dispersal

In order to build up the reduced system, we identify the stable asymptotic distri-
butions for host and parasitoid migrations, respectively. On the one hand,

lim
k→∞
F (k)
h = (ν∗| · · · |ν∗)

where

ν∗ =

(
1− α
1− αq , · · · ,

1− α
1− αq α

i−1, · · · , 1− α
1− αq α

q−1

)T
.

On the other hand, after some algebra,

lim
k→∞
F (k)
p (X1) = (µ∗(ν∗h)| · · · |µ∗(ν∗h))

where

µ∗(h) := µ∗(ν∗h) =

(
1 + h∗β1

1 +
∑q

j=1 h
∗β
j

, · · · , 1 + h∗βq

1 +
∑q

j=1 h
∗β
j

)T

.

provided h∗i =
1− α
1− αq α

i−1 h. Then,

lim
k→∞
F (k)(Xn) =

(
F̄pH, F̄h(ν∗H)P

)
= (ν∗h, µ∗(h)p) = E ◦G(Xn),

where function G is defined as follows

G : Ω2q −→ Ω2

X −→ G(X) = G(H,P ) = (h, p)

while function E is defined by means of

E : Ω2 −→ Ω2q

(h, p) −→ E(h, p) = (ν∗h, µ∗(h)p)

which gives the equilibrium of fast dynamics for the particular values n and p of
the global variables. And finally the corresponding aggregated system reads as
follows

(hn+1, pn+1) = Yn+1 = G ◦ S ◦ E(Yn) = G ◦ S ◦ E(hn, pn),

that is, the corresponding aggregated system reads as

(1.80)


hn+1 = hn

q∑
i=1

λiν
∗
i e
−aiµ∗i (hn)pn ,

pn+1 = hn

q∑
i=1

ciν
∗
i

(
1− e−aiµ∗i (hn)pn

)
,
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Let us consider its associated fixed point equations

(1.81)


h = h

q∑
i=1

λiν
∗
i e
−aiµ∗i (h)p,

p = h

q∑
i=1

ciν
∗
i

(
1− e−aiµ∗i (h)p

)
.

Proposition 1.3.9 (Trivial and semi-trivial fixed points.) Consider the fixed
point equation (1.81). If follows that

• (h, p) = (0, 0) =: E0 is a fixed point for (1.81).

• (h, p) = (h∗, 0) =: E1(h∗) for all h∗ > 0 are fixed points for (1.81)
whenever

∑q
i=1 λiν

∗
i = 1.

We seek for non trivial fixed points. For this purpose, we will show the existence
of an invariant convex compact region for (1.80). The existence of an invariant
region for the aggregated system entails that to the auxiliary system, but not to
the general system. Nevertheless, using the Brouwer’s fixed point theorem we
get the existence of at least one fixed point for the aggregated system.

Proposition 1.3.10 (Non-trivial fixed points.) Consider system (1.80) and
assume that

(1.82)

q∑
i=1

λiν
∗
i

Λai/(aδ)
> 1.

for certain constants a ≤ min {ai} and δ ≤ min {µi}. Then, there exists a region
R = [hm, hM ]× [pm, pM ] ⊂ R2

+ such that (h0, p0) ∈ R implies (hn, pn) ∈ R for
all n ≥ 0.

Proof.– Given (h, p), let us note (h+, p+) its successor according to equations
(1.80), that is,

(1.83)


h+ := h

q∑
i=1

λiν
∗
i e
−aiµ∗i (h)p,

p+ := h

q∑
i=1

ciν
∗
i

(
1− e−aiµ∗i (h)p

)
.
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Let us consider c̆ > 0 (to be determined later) and δ, δ̂ such that

0 < δ < δ̂ < min {µ∗i (h), i ∈ 1, · · · , q, n ∈ [0,∞)} < 1

along with

a := min{ai; i = 1, · · · , q}, â := max{ai; i = 1, · · · , q},
λ := min{λi; i = 1, · · · , q}, Λ := max{λi; i = 1, · · · , q},
c := min{ci; i = 1, · · · , q}, ĉ := max{ci; i = 1, · · · , q},

all of them positive constants. We will use these constants to build up sev-
eral auxiliary ”bounding ” discrete difference equation systems and such that
hm, hM , pm, pM are among their fixed points. Namely, the systems and the
corresponding fixed points are the following ones:

(1.84)


hn+1 = Λhne

−aδpn , pM =
ln Λ

aδ
,

ph+1 = ĉhn(1− e−âpn), hM =
pM

ĉ (1− e−âpM )
.

(1.85)


hn+1 = Λhne

−aδ̂pn , pm =
ln Λ

aδ̂
,

pn+1 = c̆hn(1− e−âpn ), h∗ =
pm

c̆ (1− e−âpm)
.

(1.86)


ht+1 = Λhne

−aδ̂pn , pm =
ln Λ

aδ̂
,

pt+1 = chn(1− e−aδ̂pn), hm =
pm

c(1− e−aδ̂pm)
.

Let us check several facts. It is straightforward that 0 < pm < pM . On the one
hand, by direct calculations, we get that

(1.87) hm =
ln Λ

aδ̂c
(
1− 1

Λ

) , hM =
ln Λ

aδĉ
(
1− 1

Λâ/(aδ)

) .
Moreover, it is clear that

lim
δ→0

ln Λ

δaĉ
(
1− 1

Λâ/(aδ)

) = +∞,

thus, we can choose δ small enough such that hm < hM .
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Moreover, we claim that c̆ can be chosen so that 0 < c̆ < c and hM = h∗.
It is straightforward that Ψ(p) = p

ĉ(1−eâp)
is strictly increasing for p > 0. Thus,

pm < pM implies Ψ(pm) < Ψ(pM) can diminish c̆ so that h∗ = hM . It must be
pointed out that the smaller is δ, the greater are pM and hM .

Suppose that h ∈ [hm, hM ] and p ∈ [pm, pM ]. We recall the fact that the
fact that

∑q
i=1 ν

∗
i = 1. Then, thanks to equation (1.85), we have

h+ = h

q∑
i=1

λiν
∗
i e
−aiµ∗i (h)p

≤ hMΛ

q∑
i=1

ν∗i e
−aiµ∗i (h)p

≤ hMΛe−aδ̂pm = hM ,

(1.88)

moreover, keeping in mind condition (1.82), it follows that

h+ = h

q∑
i=1

λiν
∗
i e
−aiµ∗i (h)p

≥ hm

q∑
i=1

λiν
∗
i e
−aipM

= hm

q∑
i=1

λiν
∗
i Λ

−ai
aδ > hm,

(1.89)

From equation (1.85), it follows that

p+ = h

q∑
i=1

ciν
∗
i

(
1− e−aiµ∗i (h)p

)
≤ hM ĉ

q∑
i=1

ν∗i
(
1− e−aiµ∗i (h)p

)
≤ hM ĉ

(
1− e−âpM

)
= pM ,

(1.90)
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and finally, using (1.86)

p+ = h

q∑
i=1

ciν
∗
i

(
1− e−aiµ∗i (h)p

)
≥ hmc

q∑
i=1

ν∗i
(
1− e−aiµ∗i (h)p

)
≥ hmc

(
1− e−aδ̂pm

)
= pm.

(1.91)

From (1.88), (1.90) and (1.91) we have that

(h, p) ∈ [hm, hM ]× [pm, pM ]⇒ (h+, p+) ∈ (hm, hM ]× [pm, pM ].

�

Corollary 1.3.11 (Non trivial fixed points.) Under the hypothesis of the previ-
ous proposition, there exists at least one non-trivial fixed point for system (1.80)
in R.

Proof.– The region R is an invariant, compact, convex region for the map
induced by (1.80). The the conclusion follows from an straightforward application
of the Brouwer’s fixed point theorem.

�

Previous results can be deepened under the assumptions of λi ≡ λ and ci ≡ c
for i = 1, · · · , q. In such a case equation (1.81) reads as follows

(1.92)


h = hλ

q∑
i=1

ν∗i e
−aiµ∗i (h)p,

p = hc

q∑
i=1

ν∗i
(
1− e−aiµ∗i (h)p

)
.

Supposing that h 6= 0 (1.92) simplifies in

(1.93)


1 = λ

q∑
i=1

ν∗i e
−aiµ∗i (h)p,

p = hc

q∑
i=1

ν∗i
(
1− e−aiµ∗i (h)p

)
.
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Observe that from the first equation in (1.93)

q∑
i=1

ν∗i e
−aiµ∗i (h)p =

1

λ
.

Thus, rearranging terms in (1.93) yields

(1.94) p = hc

(
1− 1

λ

)
.

Therefore, system (1.81) possesses a non trivial equilibrium if, and only if, the
equation

(1.95) φ(h) :=

q∑
i=1

ν∗i e
−aiµ∗i (h)hc(1− 1

λ) =
1

λ

has a solution. Actually, as

φ(0) = 1 and lim
n→∞

φ(h) = 0,

equation (1.95) has a solution whenever λ > 1. We will denote the non trivial
equilibrium of equation (1.81) E2 := (h∗, p∗), where h∗ stands for a solution of

equation (1.95) and p∗ := h∗c

(
1− 1

λ

)
.

Remark 1.3.12 The number of fixed points for equation (1.92) equals the num-
ber of solutions of equation (1.95).

We now turn our attention to the stability of the fixed points of system (1.80).
Let us define the function

(1.96) W (h, p) :=

(
h

q∑
i=1

λiν
∗
i e
−aiµ∗i (h)p, h

q∑
i=1

ciν
∗
i

(
1− e−aiµ∗i (h)p

))
,

which jacobian matrix is

(1.97) JW (h, p) :=

(
W11(h, p) W12(h, p)
W21(h, p) W22(h, p)

)
and, noting by (·)′ the derivative with respect of h, the corresponding entries are
given by

W11(h, p) =

q∑
i=1

λiν
∗
i e
−aiµ∗i (h)p − h

q∑
i=1

λiν
∗
i ai(µ

∗
i (h))′p e−aiµ

∗
i (h)p,
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W12(h, p) = −h
q∑
i=1

λiν
∗
i aiµ

∗
i (h)e−aiµ

∗
i (h)p,

W21(h, p) =

q∑
i=1

ciν
∗
i

(
1− e−aiµ∗i (h)p

)
+ h

q∑
i=1

ciν
∗
i ai(µ

∗
i (h))′p e−aiµ

∗
i (h)p,

and

W22(h, p) = h

q∑
i=1

ciν
∗
i aiµ

∗
i (h)e−aiµ

∗
i (h)p.

Proposition 1.3.13 The trivial fixed point E0 of (1.83) is asymptotically stable
if, and only if,

∑q
i=1 λiν

∗
i < 1.

Proof.– It follows immediately from the fact that

JW (0, 0) =

( ∑q
i=1 λiν

∗
i 0

0 0

)
,

�

Remark 1.3.14 We already know that E1(h∗) is a fixed point if, and only if,∑q
i=1 λiν

∗
i = 1. On the other hand, direct calculations yield

JW (h∗, 0) =

( ∑q
i=1 λiν

∗
i −h∗

∑q
i=1 λiν

∗
i aiµ

∗
i (h∗)

0 h∗
∑q

i=1 ciν
∗
i aiµ

∗
i (h∗)

)
.

That is, when linearizing around a semi-trivial fixed point 1 is in the spectrum of
JW (h∗, 0). Thus, it is not a hyperbolic fixed point and our results do not apply
to.

Regarding the stability of possible positive non-trivial fixed points, we were un-
able to achieve a simple condition based tr(JW (h, p)) and det(JW (h, p)) (see
bellow) even in the particular case in which λi = λ, ci = c and ai = a for
i = 1, . . . , q. Therefore, in the general case the stability conditions must be
numerically checked using the following criterion. Let (h∗, p∗) be a fixed point
to equation

(xn+1, yn+1) = W (xn, yn).

Then, (h∗, p∗) is asymptotically stable if, and only if,

(1.98) |tr(JW (h∗, p∗)| < 1 + det(JW (h∗, p∗)) < 2.
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Summary of results.

In the following paragraphs we summarize the analytical results obtained regard-
ing existence and stability of fixed points. We illustrate with numerical simula-
tions the case in which the aggregated model dynamics tends to an equilibrium.
In addition, numerical results show the existence of an attracting closed invari-
ant curve; unfortunately, we have no analytic results allowing to translate this
behavior to the complete system.

The origin is trivially fixed point of model (1.80) and it is asymptotically
stable if, and only if

∑q
i=1 λici < 1 .

Under condition
∑q

i=1 λiν
∗
i = 1 the points of {(h, 0); h > 0} are fixed points

of the aggregated model (1.80) known as semi-trivial fixed points and corre-
sponding with the parasitoid free equilibrium. These equilibrium points of the
aggregated system are not hyperbolic, so that do not provide any information
about the complete system.

We show the existence of at least a positive fixed point (h∗, p∗) which verifies
equation (1.80) when λi = λ, ci = c and ai = a for i = 1, · · · , q. In more
general cases, existence and uniqueness of a non-trivial positive equilibrium has
to be found numerically solving :

1 =

q∑
i=1

λiν
∗
i e
−aiµ∗i (h)p,

p = h

q∑
i=1

ciν
∗
i

(
1− e−aiµ∗i (h)p

)
.

Thanks to the results in previous section, the existence of a hyperbolic fixed point
(h∗, p∗) to the aggregated system (1.80) implies the existence of a sequence of
fixed points (H∗k , P

∗
k ) for the general system (1.79) for large enough values of k

(that is, if the time scales are different enough) such that

lim
k→∞

(H∗k , P
∗
k ) = (ν∗h∗, µ

∗(ν∗h∗)p∗) .

The local stability of (H∗k , P
∗
k ) is determined by the local stability of (h∗, p∗),

which must be determined numerically (for instance, by calculating the trace
and the determinant of its Jacobian matrix); if (h∗, p∗) is an asymptotically
stable (resp. unstable) equilibrium of the aggregated system (1.80), then so is
(H∗k , P

∗
k ) for the complete model (1.79) for k large enough. In addition, thanks

to theorem 1.3.8, in the asymptotically stable case, the basin of attraction of
(H∗k , P

∗
k ) can be approached by means of that of (h∗, p∗), as shown in figure 1.6.
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Figure 1.6: Domain of stability (in black) and of persistence (in grey) of the
positive fixed point of the aggregated model for different values of parasitoid
aggregation parameter β and host migration asymmetry parameter α for a
chain with q = 5 patches, λ2 = and (a) aici = 0.05, (b) aici = 0.5 and (c)
aici = 1, for i ∈ 1, · · · , q.

Conclusions.

In the model presented herein, we have limited our study to a chain of patches
and can be seen as a discrete version of a reaction-diffusion model with parasitoid
diffusion coefficients depending on the host population density (see section 9.3
in [70]). An increase of the time scale factor k of the diffusion process in our
model would have the same effect than an increase of the diffusion coefficient in
a continuous time model. In our model, the parameter k can also be associated
to the radius of the distribution after dispersal: k is the maximum number
of patches an individual can go through during one generation. Multiple host
density-dependent elementary dispersal events allow parasitoid to leave the patch
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if no hosts are present, preventing the unrealistic situation where parasitoids
would stay on an empty patch. In addition, this dispersal model is less extreme
than the ideal free distribution, which does not describe the intrinsic process of
dispersal, allowing individuals to reach any patch in the environment, regardless
of their mobility.

The expression of the aggregated model (1.80) differs from the Nicholson-
Bailey model given in the local scale (1.78). While the local Nicholson-Bailey sub-
model always provides instability, thanks to theorem 1.3.8, the complete model
may exhibit locally asymptotically stable (resp., unstable) hyperbolic equilibrium
points. We point out that this asymptotically stable equilibrium imply local sta-
bility. Thus, there is different behavior at local scale and at global scale, which is
known as functional emergence. This means that the outcomes are qualitatively
different of those expected for each of the simple processes considered in the
two time scales model. Hence, density-dependent dispersal promotes emergence,
which makes the aggregated model a useful tool to analyze the global dynamics
of the system.

Figure 1.7: Trajectories of the complete (grey) and aggregated (black) models
with the set of parameters α = 2.3, β = 3, λ = 1.5, ai = 0.5, ci = 1
i = 1, · · · , 5 and different values of k. Part of transient dynamics has not
been represented. (a) For k = 15 the attractor of the complete model is an
equilibrium point. (b) For k = 20 the attractor of both the complete and the
aggregated model is of the same type. (c) For k = 50 the attractor of the
complete model almost matches the one of the aggregated model.
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Conclusions and perspectives.

On the other hand, numerical simulations show the existence of invariant
attracting curves for the aggregated system. Even if such numerical simulations
show agreement between both the aggregated and the complete models, there
are no theoretical results supporting such an agreement.

1.4 Conclusions and perspectives.

In this chapter we have dealt with discrete two time scale systems built upon the
slow time unit. The prototype of such kind of systems is

(1.99) Xk,n+1 = S ◦ F (k)(Xk,n),

where functions F and S describe the fast and the slow dynamics, respectively.
The super-index (k) stands for the k-fold composition of F and reflects the ratio
between time scales (that is, F acts k times for each action of S). To the best
of our knowledge, the most general results in approximate aggregation of this
kind of systems are collected in theorem 1.1.7 from [90]. Apart from describing
conditions allowing the reduction procedure, theorems in [90] allow to translate
the existence of asymptotically stable (respectively, unstable) hyperbolic fixed
points and periodic solutions found for the aggregated system to the complete
system. These results hold upon general but restrictive hypothesis. In practice,
the main difficulties for ascertaining whether a system like (1.99) fulfils those
conditions fall into the function describing the fast dynamics. As a matter of
fact, up to now, applications consider fast dynamics of the form

(1.100) F (X) = FX,

where F is a regular stochastic matrix.
Our results in this chapter, contained in sections 1.2 and 1.3, provide with

general classes of two time scale systems susceptible of being approximately ag-
gregated according with [90] and extending the assumption (1.100). Besides,
these classes of functions have proven to be of interest in applications.

Results achieved in section 1.2 are collected in [68] and address systems
whose fast dynamics depends on global variables. Without lost of generality, let
us consider that state variables vector X represents a population and that the
fast dynamics is conservative of the total population y = ‖X‖1. Then, we have
considered

F (X) = F(y)X,
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where F(y) is a regular stochastic matrix and its entries are C1 function of y.
This assumption means that the behavior of the population at the fast time
scale depends on the current total population size. From a different point of
view, we can say that fast dynamics depend on the state variables through the
global variable y. We have shown in theorem 1.2.3 that the reduction process
described in [90] applies to this setting and we applied it to different models of
population dynamics coupling demographic and migratory processes which take
place at different time scales. An analysis of these models, exchanging the role
of the slow and fast dynamics, completes the section.

In a first application, we also consider individual displacements to be faster
than demography. In this case migratory parameters depend on the total popu-
lation size. As in the previous example, we have simulated spatial heterogeneity
decomposing the habitat in two patches linked by migrations (displacements)
and letting demographic parameters to be different at each patch. Namely, one
of the patches was a sink and the other one was a source. In this case, the
two dimensional system reduced to an scalar equation, which is much simpler to
analyze. In particular, we have shown that appropriate migration rates give rise
to new interpretations of well known discrete models (Beverton-Holt and Ricker
equations) and may induce Allee effect. The details of all these results can be
found in [68].

In a second application, we consider an age structured population in a patchy
environment evolving under a Leslie type demographic process, which is faster
than displacements between patches. Assuming that fecundity and mortality
parameters of each age class depend on the corresponding age class size (the
number of individuals belonging to each age class) we found a multi-attractor
scenario from the study of the aggregated model. The reduction process allows
us to analyze a four dimensional system through a two dimensional one.

Section 1.3 is based on the results achieved in [72]. There, we let the state
variables to be partially coupled at the fast time scale. We mean that the
evolution within the fast time scale of a group of state variables depend on the
current state of other group of state variables. The idea is conveyed as follows: let
the vector of state variables X = (X1, X2) represent two structured populations.
Define

F (X) = (F1X1, F2(X1)X2),

where F1 and F2(X1) are regular stochastic matrices for each X1 and the entries
of F2 are C2 function of X1. The main result of this section, collected in theo-
rem 1.3.8, proves that the corresponding complete system is susceptible of being
approximately aggregated, as it fulfills those hypothesis in [90]. These settings
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came across from an interesting application on host-parasitoid community in-
habiting a chain of patches with an arbitrary number of patches A. Movements
between patches are considered to be faster than host-parasitoid interactions.
Parasitoid movements depend on host densities at each patch; meaning that
parasitoids avoid those patches with low host densities. The complete system
consists on a set of 2A equations. It is not possible to handle it analytically,
even for low values of A. Nevertheless, aggregation techniques allow the study
of such a system through a two dimensional one (see [72] for the details). As a
result, we found the existence of asymptotically stable equilibrium points while,
in absence of migrations, only unstable outcomes are possible.

Regarding perspectives, it would be of interest to extend the work done in
sections 1.2 and 1.3 to deal with fully coupled fast dynamics of the form

F (X) = F(X)X,

where F(X) is a regular stochastic matrix for each X.
Besides, results in [90] provide no information about non hyperbolic fixed

points (or non hyperbolic periodic orbits) nor about invariant or attracting objects
different from hyperbolic equilibria or periodic orbits. Thus, it is of interest results
contributing to translate information about invariant or attracting objects as well
as the stability of non hyperbolic fixed points for the complete system through
the aggregated system.
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Chapter 2

Contributions to the
approximate aggregation of
nonautonomous ordinary
differential equations.

2.1 Introduction.

In Nature, many physical parameters describing environmental conditions, as
light, temperature, relative humidity,. . . , change with time. These environmental
changes have strong influence on individuals and induce different responses in the
behavior of populations living in. Vital processes as feeding or reproductive tasks,
migrations or activity level vary with time. Thus, nonautonomous systems are
realistic models for describing a population living and interacting in changing
environments.

If we consider that these changes evolve continuously (smoothly), then sys-
tems of differential equations provide a more accurate description of reality than
systems of difference equations.

The above comments along with the considerations on Hierarchy Theory
made in section 1.2 provide us with the basic ingredients describing the kind of
systems we will deal with: two time scales nonautonomous ordinary differential
equation (ODE) systems. The idea of considering time dependence comes across
as a natural extension of the available techniques for the approximate aggregation
of two time scales autonomous ordinary differential equation systems.

Time dependence may occur in many different ways. Nonautonomous sys-
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tems specialize according to specific features, namely, depending on how the
coefficients of the system vary with time. Among them, we find periodic systems
and asymptotically autonomous systems, which are in the scope of our study.

Let us recall the difficulties and aims related with two time scales approximate
aggregation problems. Considering a detailed model containing two different pro-
cesses evolving at different time scales yields detailed but complicated models.
Sometimes, under certain conditions, we can take advantage of the existence of
two different time scales to reduce the dimension of the corresponding system
getting an aggregated system (less dimensional) to study the complete system.
We face the problem of determining which dynamical properties of the aggre-
gated system remain valid for the complete system. Approximate aggregation
techniques for autonomous ordinary differential equations were introduced in [54],
where perfect aggregation problems were addressed. Perfect aggregation arises
when the behavior of the original and the aggregated dynamics are equivalent and
only holds under very restrictive conditions. Soon, these results were extended
to approximate aggregation through [5] and [55]. From a mathematical point of
view, this results on approximate aggregation, which we will described later on,
are based upon appropriate center manifold theorems due to Fenichel [32]. Many
different and interesting applications have been developed using these techniques;
see, for instance [6], [7] and references therein.

As a matter of fact we briefly introduce several applications on autonomous
ordinary differential equations which somehow motivate or precede those devel-
oped herein. There is a range of applications on population dynamics spatially
distributed in patchy environments (see, for instance, [77] and [78]). These
models let population displacements between heterogeneous patches to be faster
than local community interactions. On the other hand, in [9] it was addressed
the study of autonomous two time scales eco-epidemic models. Namely, a clas-
sical predator-prey system such that an epidemic process affected predators at
the fast time scale.

From the best of our knowledge, the only result of approximate aggregation
of a two time scales nonautonomous system is found in [76]. In this work only the
fast dynamics was considered to be nonautonomous and assumed to tend to an
stationary periodic solution depending on global variables. Averaging techniques
and the Fenichel center manifold theorems [32] allow to proceed to the reduction
of the system. In our work, we introduce periodic time dependence on both the
slow and the fast dynamics and we use the Hoppensteadt theorems on singular
perturbations [52] to justify the suggested reduction procedure.
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In the following, we summarize the main results and the underlying ideas in
the approximate aggregation of two time scales autonomous ordinary differential
equation systems. Next, we introduce a theorem due to Hoppensteadt [52], which
is the cornerstone of the reduction procedure described herein. The introduction
finishes describing the contents of this chapter.

2.1.1 Two time scales autonomous ordinary differen-
tial equation systems.

Let us recall the notation introduced in the previous chapter: let ΩN ⊂ RN be
an open, bounded, connected and non-empty set. State variables are represented
by n ∈ ΩN . The prototype of two time scales autonomous ordinary differential
equations system is that of the form

(2.1)


dn

dτ
= f(n) + ε s(n),

n(τ0) = n0

where functions f = (f1, · · · , fN) , s = (s1, · · · , sN) ∈ C1(ΩN) stand for the
fast and the slow dynamics, respectively. The parameter ε is a small positive
real number and means that the speed of the process described by s is slow
when compared to f , that is, the smaller is ε, the smaller is the contribution of
function s to the derivative dn/dτ . In other words, the smaller is ε, the bigger is
the difference between the characteristic time scales of the two processes involved
in system (2.1).

When dealing with structured populations, that is, with populations divided
in groups and subgroups, the state variables vector can be written as

n = (n1, · · · ,nq) with ni = (ni1, · · · , niNi),

where q is the number of groups, each of them consisting of Ni subgroups,
for i = 1, · · · q. Thus, nij is the number of individuals of the j-fold subgroup,
j ∈ {1, · · · , Ni} of group i, with i ∈ {1, · · · , q}.

System (2.1) provides a natural way of introducing the construction of a gen-
eral two time scales model. Nevertheless, the reduction process begins properly
with system (2.1) written in its equivalent slow-fast form. Namely, it is needed
a suitable change of variables (x,y)→ n(x,y), with (x,y) ∈ RN−k ×Rk, such
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that (2.1) becomes

(2.2)


dx

dτ
= F(x,y) + εS(x,y), x(τ0) = x0,

dy

dτ
= εG(x,y), y(τ0) = y0,

where variables x and y are known as fast variables and slow variables, respec-
tively, and functions F, S, G ∈ C1(ΩN). Finding the transformation (x,y) →
n(x,y) which yields the slow-fast form (2.2) of system (2.1) could be a difficult
task. The construction of general algorithms solving this problem is presently
an active research line. On the other hand, in some applications, as we will see
later, the context provides a natural way to define the so called slow variables
y and, thus, to express system (2.1) in the slow-fast form. The definition of the
slow variables in the autonomous case can be found in [6].

The underlying idea is the following. The transformation of variables (x,y)→
n(x,y) leads system (2.1) into system (2.2) allowing, under certain conditions,
a sort of variables decoupling. Assume that the fast dynamics posses an asymp-
totically stable equilibrium x∗(y) (at ε = 0). Therefore, such an equilibrium
persists under small perturbations (ε ∼ 0). The reduction techniques provide
conditions to allow the study of the long term behavior of system (2.2) by means
of the less-dimensional or aggregated system

(2.3)

{
dy

dt
= G(x∗(y),y),

y(t0) = y0,

where t = ετ . The Geometrical Singular Perturbation theory, in the sequel GSP,
provides with results to deal with such kind of systems. The most important
ones have to do with the persistence of invariant manifolds to small enough
perturbations. These manifolds are center manifolds containing the nontrivial
part of the whole dynamics of the complete system (2.2).
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Reduction theorem in the autonomous case.

In order to deal with system (2.2) we introduce an equation for ε;

(2.4)



dx

dτ
= F(x,y) + εS(x,y),

dy

dτ
= εG(x,y),

dε

dτ
= 0.

System (2.4) can be seen as an ε-perturbation of the system obtained with ε = 0.
The conditions for the reduction are the following ones:

(C1) We recall that slow variables y are constant when ε = 0. Assume that,
for each y ∈ Rk, there exists at least one equilibrium (x = x∗(y) ,y , 0),
defined by

F(x, x∗(y)) = 0.

Consider the set:

M0 :=
{

(x, y, ε); x = x∗(y) ,y ∈ Rk, ε = 0
}
.

This invariant set for the unperturbed system shall play the role of the
invariant normally hyperbolic manifold in the GSP theory.

(C2) Consider J(y) the linear part of system (2.4) around the equilibrium point
(x∗(y) ,y , 0). Assume that the Jacobian matrix J(y) has N −k eigenval-
ues with negative real parts and k+1 null eigenvalues. With this condition,
the set M0 is normally hyperbolic since, at each point in M0, the restric-
tion of the linear part to the M0 normal space has negative eigenvalues.

Under these conditions, the main result in approximate aggregation of autono-
mous ODE systems is the following [6].

Theorem 2.1.1 Under the conditions (C1) and (C2), for each compact subset
K ⊂ Rk and for each integer r > 1, there exists a real number ε and a Cr
function Ψ,

Ψ : K × [0, ε] → RN−k

(y, ε) 7→ x = Ψ(y, ε)

such that:
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1. Ψ(y, 0) = x∗(y)

2. The graph W of Ψ is invariant under the flow defined by the vector field
(2.4).

3. At each point (x∗(y), y, 0)) ∈M0,W is tangent to the central eigenspace
Ec associated with the eigenvalues of J(y) with null real parts.

This means that considering the restriction of the vector field to the invariant
manifold entails reducing the dimension of the system. The reduced system,
called aggregated system, is:

dy

dt
= G(Ψ(y, ε),y),

with t = ετ . Typically ε ∼ 0, and it is usual to approximate the aggregated
system by means of

(2.5)
dy

dt
= G(Ψ(y, 0),y).

Just recall that function Ψ is of class Cr and Ψ(y, 0) in (2.5) is the zero order
term of the Taylor expansion corresponding to Ψ in ε around ε = 0. Thus,
calculating higher order terms we can get a more accurate approximation of the
aggregated system.

In the following, we deal with the approximate reduction of the nonau-
tonomous counterpart of system (2.2). Our results do not relay on the GSP
theory. Instead of this, our work is based upon a theorem due to Hoppen-
steadt [52], which we will present in the next section.

2.1.2 The Hoppensteadt theorem.

In this section we recall the settings used by Hoppensteadt in [52] to achieve the
aforementioned results. In [52], Hoppensteadt deals with an initial value problem
of the form

(2.6)


ε
dx

dt
= $(t,x,y, ε), x(t0) = x0,

dy

dt
= ϕ(t,x,y, ε), y(t0) = y0.
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Functions $ = ($1, · · · , $N−q) and ϕ = (ϕ1, · · · , ϕq) are of class C2([t0,∞)×
RN−q × Rq × [0, ε0]). System (2.2) is a particular case of system in (2.6). Just
writing system (2.2) in terms of t = ετ yields

ε
dx

dt
= F(x,y) + εS(x,y),

dy

dt
= G(x,y).

Together with problem (2.6), Hoppensteadt considers two other related problems.
Letting ε = 0 leads to the degenerated system

(2.7)


0 = $(t,x,y, 0),

dy

dt
= ϕ(t,x,y, 0),

y(t0) = y0,

The other associated system is obtained by means of the stretching change of
independent variable s = (t− α)/ε in (2.6) that yields, at ε = 0,

dx

ds
= $(α,x,y, 0),

dy

ds
= 0,

where y is constant and so the previous system can be written in terms of
parameters α ∈ R and β ∈ Rk as

(2.8)


dx

ds
= $(α,x,β, 0),

x(0) = x0,

which is known as the boundary layer problem: In addition, the following con-
ditions are required:

(I) Problem (2.6) has a solution (x(t),y(t)) defined for t ∈ I := [t0,∞). If
this condition holds, we can apply an obvious transformation so that this
solution is (0,0) for t ∈ I. Moreover, given, 0 < R ∈ R, let us define

SR := {(x,y) ∈ RN−k × Rk; ‖(x,y)‖ ≤ R}

(II) It holds that $,ϕ,$t, $x, $y, ϕt, ϕx, ϕy ∈ C (I × SR × [0, ε0]).
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(III) There exists a bounded C2 function x = x(t,y) such that

$(t,x(t,y),y, 0) = 0, ∀(t,y) ∈ I × SR
and x(t,y) is isolated, meaning that z 6= x(t,y) and $(z,y) = 0 implies
|z− x(t,y)| > R.

Assuming this condition, there is no loss of generality in considering that
x(t,y) = 0 for all (t,y) ∈ I × SR. If this were not the case, the transfor-
mation

(2.9) x = z + x(t,y)

allows us to write (2.7) in the more convenient form

(2.10)


dy

dt
= ϕ(t,0,y, 0),

y(t0) = y0

for further purposes.

(IV) Function ϕ is continuous at x = 0 and ε = 0 uniformly in (t,y) ∈ I×SRy ,
where

SRy := {y ∈ Rk; ∃x ∈ RN−k such that (x,y) ∈ SR}

and ϕ(t,0,y, 0), ϕy(t,0,y, 0) are bounded on (t,y) ∈ I × SRy . Notice
that

ϕy(t,0,y, 0) =

(
∂ϕi(t,0,y, 0)

∂yj

)
i,j=1,··· ,k

.

(V) Function $(t,x,y, ε) is continuous at ε = 0 uniformly in (t,x,y) ∈ I×SR.
Functions $(t,x,y, ε), $t(t,x,y, 0), $x(t,x,y, 0) and $y(t,x,y, 0) are
bounded on I × SR.

The last two assumptions concern the stability required of the solutions of the
degenerated system (2.7) and the boundary layer problem (2.8). Hoppensteadt
used the two following classes of functions

K := {d : [0,∞)→ [0,∞); d(0) = 0, strictly increasing and continuous}

S := {σ : [0,∞)→ [0,∞); lim
t→∞

σ(t) = 0, strictly decreasing and continuous}

We note φ(t, t0, ẑ) the solution of a given differential equation fulfilling φ(t0) = ẑ.
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(VI) The zero solution of the initial value problem (2.10) is uniform-asymptot-
ically stable, meaning that, if y = φ(t, t0,y0) is the solution of system
(2.10), there exist d ∈ K and σ ∈ S such that

(2.11) ‖φ(t, t0,y0)‖ ≤ d (‖y0‖)σ(t− t0)

for ‖y0‖ ≤ R and 0 ≤ t0 ≤ t <∞. (cf [39]).

(VII) The zero solution of the boundary layer problem (2.8) is uniform-asymptot-
ically stable uniformly in the parameters (α,β) ∈ I × SRy . That is, if
x = ψ(s,x0, α,β) is the solution of the boundary layer problem (2.8),
there exist e ∈ K and ρ ∈ S such that

(2.12) ‖ψ(s,x0, α,β)‖ ≤ e (‖x0‖) ρ(s)

for ‖x0‖ ≤ R, 0 ≤ s <∞ and (α,β) ∈ I × SRy .

Keeping functions $ and ϕ as general ones of class C2 implies that none of these
conditions can be removed, as Hoppensteadt shows by means of appropriate
examples [52]. Under these conditions, the following result holds:

Theorem 2.1.2 Let the conditions (I) through (VII) be satisfied. Then for suffi-
ciently small ‖x0‖+‖y0‖ and ε the solution of the perturbed system (2.6) exists
for t0 ≤ t < ∞, and this solution converges to the solution of the degenerate
system (2.7) as ε→ 0 uniformly on all closed subsets of t0 < t <∞.

Thanks to theorem 2.1.2 we are able to study the general system (2.6) through
the less dimensional system (2.10). Even if of different nature, in order to keep
parallelism between the aggregation techniques in the autonomous case and these
developed here in, we will refer to system (2.10) as the aggregated problem.

2.1.3 Contents of this chapter.

In this chapter we use the Hoppensteadt theorem 2.1.2 for extending the approxi-
mate aggregation methodology available for autonomous two time scales ordinary
differential equation systems of the form of (2.1) to some nonautonomous cases.
We point out that conditions (I) up to (VII) are hard to be checked. The goal
of this chapter consist in describing general classes of nonautonomous two time
scale systems such that these 7 conditions can be replaced by 2 easy-to-check
and biologically meaningful conditions.
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Let us describe the aforementioned classes of systems we will deal with. Our
study concerns with systems of one of the following forms

(2.13)


dn

dτ
= f(ετ,n) + ε s(ετ,n),

n(τ0) = n0,

or

(2.14)


dn

dτ
= f(τ,n) + ε s(τ,n),

n(τ0) = n0,

which can be expressed in the corresponding slow-fast form

(2.15)


dx

dτ
= F(ετ,x,y) + εS(ετ,x,y), x(τ0) = x0,

dy

dτ
= εG(ετ,x,y), y(τ0) = y0.

or

(2.16)


dx

dτ
= F(τ,x,y) + εS(τ,x,y), x(τ0) = x0,

dy

dτ
= εG(τ,x,y), y(τ0) = y0,

being all the functions involved in the previous ordinary differential equation sys-
tems of class C2. Regarding systems (2.14) and (2.16), we ask functions F,S and
G involved therein to be asymptotically autonomous; see section 2.3 for further
information. On the other hand, functions involved in systems (2.13) and (2.15)
are supposed to be periodic functions of time τ with the same period. Thus, the
term ετ modulates somehow the length of this period; see section 2.2 for more
details.

This chapter is organized as follows. Section 2.2 deals with a class of systems
of the form of (2.15) and is based on [66] and [67]. After establishing the
corresponding version of theorem 2.1.2, we analyze alternative conditions assuring
the stability condition given by (2.11). Finally, we apply this results to the
study of two different models. On the one hand, we analyze a two patches
periodic Lotka-Volterra predator-prey type model and a refuge for prey. On the
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other hand, we consider a two patches periodic multi strain SIS epidemic model
based upon [65]. In both cases displacements between patches stand for the fast
process.

In section 2.3 we analyze systems of the form of (2.16). We establish the
corresponding version of theorem 2.1.2 and we apply this results to the study of
a nonautonomous asymptotically autonomous eco-epidemic system generalizing
that addressed in [9]. This model consist on a Lotka-Volterra predator-prey
model coupled with an epidemic process. Namely, predators are affected by an
epidemic which stands for the fast process.

2.2 Slowly varying periodic dynamics.

Due to Earth movements; rotation around its axes and translation around the
Sun, many environmental conditions change periodically. Just think that every-
body has experienced daily or seasonally periodicity. It is realistic considering
populations inhabiting periodic environments, meaning that parameters describ-
ing environmental conditions are periodic in time.

We carry on the approximate aggregation of systems of the form

(2.17)


dn

dτ
= f(ετ,n) + εs(ετ,n),

n(τ0) = n0

where n = (n1, · · · , nN) ∈ ΩN ⊂ RN , an open bounded nonempty set, f =
(f1, · · · , fN), s = (s1, · · · , sN) ∈ C2(R × ΩN) are periodic functions of time
with the same period. To perform its approximate aggregation, we assume that
the previous system can be written in the slow-fast form (2.15) by means of an
appropriate change of variables n ∈ RN −→ (x, y) ∈ RN−k × Rk,

(2.18)


dx

dτ
= F(ετ,x,y) + εS(ετ,x,y), x(τ0) = x0,

dy

dτ
= εG(ετ,x,y), y(τ0) = y0.

We point out that the independent variable of system (2.18) is τ while functions
F,S and G involved in (2.18) depend on ετ and are periodic on τ . We refer to
this fact by saying that these functions are ”slowly periodically varying”, meaning
that the closer to zero is ε, the larger is the corresponding period.
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2.2.1 An aggregation theorem.

System (2.18), which we recall for the convenience of the reader,
dx

dτ
= F(ετ,x,y) + εS(ετ,x,y), x(τ0) = x0,

dy

dτ
= εG(ετ,x,y), y(τ0) = y0,

obviously falls into those considered by Hoppensteadt (see (2.6) keeping in mind
that t = ετ). The following result is the version of theorem 2.1.2 corresponding
to system (2.18).

Theorem 2.2.1 Consider system (2.18), where F, S, G ∈ C2(I × SR),

SR :=
{

(x,y) ∈ RN−k × Rk; ‖y − y0‖ ≤ R, ‖x− x∗(t,y)‖ ≤ R, t ∈ I0

}
with R > 0 a positive constant, y0 and x∗(t,y) to be defined, I0 = [t0, t0 + ω],
I = [t0,∞), F, S and G are periodic functions of time with the same period ω.
Assume that

(C1) There exists an unique continuum of equilibria x∗(α,β) (see remark 2.2.2),
with α ∈ I and β ∈ Rk such that ‖β − y0‖ ≤ R for system

(2.19)
dx

ds
= F(α,x,β),

known as boundary layer system, such that the real part of the eigenvalues
of JxF(α,x∗(α,β),β) is negative (J stands for the Jacobian matrix).

(C2) The aggregated system

(2.20)
dy

dt
= G(t,x∗(t,y),y),

where x∗(α,β) is that of condition (C1), possesses a periodic solution
y∗(t, t0,y0) defined for all t ∈ I which is uniformly-asymptotically sta-
ble. We mean that there exists R > 0 such that for any other solution
Φ(t, t0, ȳ0) of system (2.20) with ‖ȳ0 − y0‖ ≤ R, there exist functions
d ∈ K and σ ∈ S such that

(2.21) ‖y∗(t, t0,y0)− Φ(t, t0, ȳ0)‖ ≤ d (‖y0 − ȳ0‖)σ(t− t0).
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Then, there exists 0 < ρ ≤ R such that for each ε > 0 small enough and each
initial condition (x̄0, ȳ0) such that ‖(x̄0, ȳ0) − (x0,y0)‖ < ρ the corresponding
solution (xε(t, t0, x̄0), yε(t, t0, ȳ0)) of the original system (2.17) verifies

lim
ε→0

(xε(t, t0, x̄0), yε(t, t0, ȳ0)) = (x∗(t,y∗(t, t0,y0)),y∗(t, t0,y0))

uniformly on closed subset of [t0,∞).

Proof.– The proof consists in checking hypotheses (I) up to (VII) in the Hop-
pensteadt theorem.

(I) and (II) hold because of the regularity of functions F, S and G.

(III) We have asked for this at condition (C1) of the statement of the theorem.

(IV) Notice that ϕ(t,x,y, ε) = G(t,x,y) and, in particular, it does not depend
on ε. Clearly, functions ϕ(t,x∗,y, 0) = G(t,x∗,y) and ϕ′y(t,x∗,y, 0) =
G′y(t,x∗,y) are bounded on I × SR as functions G and G′y are periodic
on t and x∗ and y vary on a compact set.

Let us fix η > 0. For each t ∈ I and y ∈ R such that ‖y − y0‖ ≤ R
function G(t, ·,y) is continuous in x at x = x∗(t,y). Thus, there exists
δ(t,y) such that

‖x− x∗(t,y)‖ < δ(t,y)⇒ ‖G(t,x,y)−G(t,x∗(t,y),y)‖ < η.

Notice that δ is continuous on t and y. Besides, we recall that G is ω-
periodic on t. Therefore, for each y fixed such that ‖y− y0‖ ≤ R we can
choose δ(·,y) to be ω-periodic on t and we define

0 < δ(y) := min {δ(t,y); t ∈ [t0, t0 + ω]} = min {δ(t,y); t ∈ I} .

In fact, as y varies on the compact set ‖y − y0‖ ≤ R, there exists 0 < δ
defined as δ := min {δ(y); ‖y − y0‖ ≤ R} whit the desired property.

(V) Analogous to (IV).

(VI) We have asked for in condition (C2).

(VII) This is contained in condition (C1).

�
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Remark 2.2.2 Theorem 2.2.1 is also true if there exist finitely many continuum
of equilibria of the form x∗(α,β) which are suitably isolated; meaning that if
there exist x∗i (α,α, β) such that F(α,x∗i (β),β) = 0 for i = 1, 2, then

‖x∗1(α,β)− x∗2(α,β)‖ > R

for all α and β, being R > 0 that from theorem 2.2.1.

In the general case checking condition (2.21) could be difficult. Taking advantage
of the periodic feature of system (2.18) the following result provides us with easy-
to-check conditions implying condition (2.21)

Proposition 2.2.3 Assume that the aggregated system (2.20) possesses a pe-
riodic solution y∗(t). Consider the linearization of system (2.20) around y∗(t)

(2.22) z′ = Gy(t,x∗(y∗),y∗)z.

Then, any of the following conditions assures that y∗(t) is uniformly asymptoti-
cally stable in the sense of condition (C2):

1. The characteristic multipliers of system (2.22) are in modulus less than
one.

2. Condition (2.21) holds for the zero solution of system (2.22).

Proof.–

1. Let us note y∗(t) = y∗(t, t0, y
∗
0) the periodic solution of system (2.20)

and Φ(t) = Φ(t, t0, w0) any other solution of system (2.20), respectively.
We define z(t) := Φ(t)− y∗(t) and we seek for suitable functions d ∈ K
and σ ∈ S such that the stability condition stated in (2.21) holds. In
fact, considering the variational problem around y∗(t), we get that z is the
solution of

(2.23)
dz

dt
= Gy(t,x∗(y∗),y∗)z + f(t, z),

where f(t, z) = o(|z|) uniformly in t because function G is periodic on
t. Matrix Gy(t,x∗(y∗),y∗) is periodic and a classical theorem due to
Liapunov (see, for instance, theorem 2.2.6 in [30]) assures the existence of
a transformation of variables z = P (t)w such that system (2.23) becomes

(2.24)
dw

dt
= Aw + f̂(t,w),
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where A is a matrix with constant entries and f̂(t,w) = o(|w|) uniformly
in t because function P (t) is continuously differentiable regular matrix pe-
riodic on t with period ω or 2ω. The eigenvalues of A are the characteristic
exponents of system (2.22). If all the characteristic multipliers are in mod-
ulus less than 1, then all of the characteristic exponents have negative real
parts (see, for instance, (2.2.13) in [30]). Therefore, condition 1 implies
that the real part of all the eigenvalues of A is strictly negative. The
variation constants method applied to system (2.24) yields

(2.25) w(t) = e(t−t0)Aw(t0) +

∫ t

t0

e(t−s)Af̂(t,w)ds.

As the real part of the eigenvalues of A is strictly negative, there exist
positive constants ξ and K such that∥∥e(t−t0)A

∥∥ ≤ Ke−ξ(t−t0) t ≥ t0,

which yields

(2.26) ‖w(t)‖ ≤ ‖w(t0)‖Ke−ξ(t−t0) +

∫ t

t0

K̄e−ξ(t−s)
∥∥∥f̂(t,w)

∥∥∥ ds.
Besides, the fact that f̂(t,w) = o(‖w‖) yields the following. Given ε > 0
there exists δ > 0 such that ‖w‖ ≤ δ implies∥∥∥f̂(t,w)

∥∥∥
‖w‖ ≤ ε

K̄
.

Therefore, if ‖w‖ ≤ δ, it follows that

‖w(t)‖ ≤ ‖w(t0)‖Ke−ξ(t−t0) + ε

∫ t

t0

e−ξ(t−s) ‖w(s)‖ ds.

Multiplying the previous inequality by eξt yields

(2.27) ‖w(t)‖ eξt ≤ ‖w(t0)‖Keξt0 + ε

∫ t

t0

eξs ‖w(s)‖ ds.

Let us see now that for ‖w(t0)‖ < δ/K and ε < ξ we have

(2.28) ‖w(t)‖ ≤ ‖w(t0)‖Ke−(ξ−ε)(t−t0).
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We define

R(t) :=

∫ t

t0

ε eξs ‖w(s)‖ ds.

Direct calculations and (2.27) yield

R′(t)− εR(t) = ε eξt ‖w(t)‖ − ε
∫ t
t0
ε eξs ‖w(s)‖ ds

= ε
(
‖w(t0)‖Keξt0 + ε

∫ t
t0
eξs ‖w(s)‖ ds

)
−ε
∫ t
t0
ε eξs ‖w(s)‖ ds

≤ εK eξt0 ‖w(t0)‖

which implies

R(t) ≤ R(t0)eε(t−t0) +

∫ t

t0

εK eξt0eε(t−s) ‖w(t0)‖ ds.

Moreover, R(t0) = 0 and, using the previous inequality in (2.27) we get

‖w(t)‖ eξt ≤ ‖w(t0)‖Keξt0 +
∫ t
t0
εK eξt0eε(t−s) ‖w(t0)‖ ds

= ‖w(t0)‖Keξt0
(

1 +
∫ t
t0
ε eε(t−s)ds

)
= ‖w(t0)‖Keξt0 eε(t−t0).

Finally, rearranging terms gives rise to

‖w(t)‖ ≤ ‖w(t0)‖Ke−ξ(t−t0)eε(t−t0).

Thus, defining

d(‖y∗0 −Φ0‖) := K ‖w(t0)‖ = K ‖y∗0 −Φ0‖

and
σ(t− t0) := e−(ξ−ε)(t−t0)

finishes the proof.

2. It is straightforward.

�
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2.2.2 Periodic predator-prey system with fast autono-
mous migrations.

Patchy environments enable a tool for simulate environmental heterogeneity.
Given a predator-prey community inhabiting in a patchy environment and con-
sidering that individual displacements between patches are faster than community
interactions yields a two time scales model.

Since the pioneering works of Lotka [60], [61] and Volterra [103] in predator-
prey models, many work has been done. In particular, much efforts focus to
ascertaining appropriate functional responses for the models to accurately de-
scribe reality. In ecology, a functional response is the intake rate of a consumer
as a function of food density. Besides, it is associated with the quantitative
response; the reproduction rate of a consumer as a function of food density.

The most used functional responses (as Holling type [51] ones) are function
of prey density and do not consider predator interference which, according to
field data [34], has turn out to be relevant.

Summing up we have the basic ingredients of this section. We begin with
the construction of an spatially distributed two time scales predator-prey model
with functional response of Beddington [15] DeAngelis [28] type, which takes
into account predators interference. Then, using the methodology developed
in section 2.2.1, we derive reduced model to simplify the study of the original
one. After doing so, we perform a detailed analysis of the aggregated system,
pointing out which information about the complete system can be recovered from
the study of the reduced system through theorem 2.2.1 and proposition 2.2.3.

Construction and reduction of the system.

We consider a predator-prey model inhabiting an heterogeneous ambient. We
simulate heterogeneity by considering a patchy environment and letting individu-
als migrate between patches. By the sake of simplicity we consider a two patches
environment. Prey population at patch i = 1, 2 is noted by ni. Prey migrate
from patch i at a constant rate mi. Predators p stay confined in the second
region. Migrations are understood as individual movements between different
zones of the habitat. Thus, we consider migrations to be faster than local dy-
namics which, in addition, are supposed to depend on time periodic functions.
The first patch is taken to be a refuge for prey and the equation for n1 is of
logistic type. In the second patch prey and predators interact. These interac-
tions are described by a classical predator-prey system with prey logistic growth
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in absence of predators, predator exponential decay in absence of prey and a
particular functional response of the following form:

(2.29) f(t, x, y) =
a(t)x

1 + c(t)y
,

(x and y stand for prey and predator densities) where the upper bounding preda-
tors feeding mechanism is limited to predators interference. From the pioneering
works of Beddington [15] and DeAngelis [28] it is known that predators inter-
ference is a relevant mechanism in predator-prey interactions. In Skalsky and
Gilliam [96] it is presented statistical evidence from nineteen predator-prey sys-
tems that three predator-dependent functional responses (Beddington-DeAngelis,
Crowley-Martin and Hassel-Varley) can provide better descriptions of predator
feeding over a range of predator-prey abundances. It is found that no single
functional response best describes all of the data sets, but a common feature
of the three proposed functional responses is that all of them include predator
interference. From a phenomenological point of view, functional response (2.29)
is the simplest one keeping predator interference.

In addition, compared with expression (2.29), the Beddigngton-DeAngelis
functional response contains an extra term b(t)x (known as ”handling” term) in
the denominator. This term represents a mechanism to upper bounding predators
feeding rate when there is food superabundance. On the other hand, we notice
that this cannot be the case in our model because prey, x(t), local dynamics in
the no-refuge region is driven by equation

dx

dt
= r2(t)x

(
1− x

K2(t)

)
− φ2(t) x

1 + c(t)y
y

which solutions are bounded from above by the solutions, n(t), of the periodic
logistic equation

dn

dt
= r2(t)n

(
1− n

K2(t)

)
which are bounded. Thus, in our model the aforementioned upper bounding
mechanism is not crucial and we decided to use the simplified form (2.29) of
Beddington-DeAngelis functional response.

All those settings are represented by means of the following system of nonau-
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tonomous ordinary differential equations:
(2.30)

dn1

dτ
= −m1n1 +m2n2 + εr1(ετ)n1

(
1− n1

K1(ετ)

)
,

dn2

dτ
= m1n1 −m2n2 + ε

(
r2(ετ)n2

(
1− n2

K2(ετ)

)
− φ2(ετ) n2

1 + c(ετ)p
p

)
,

dp

dτ
= ε

(
−λ3(ετ)p+

φ3(ετ) n2

1 + c(ετ)p
p

)
,

where the functions rj, λ3, c, φj+1, Kj ∈ C2, for j = 1, 2, are positive, bounded
away from zero and periodic with the same period ω. These functions depend
on the slow time unit t = ετ . On the other hand, ε is a small positive parameter
representing the ratio between the time scales. As usual, ri (i=1,2) and λ3

stand for the respective net growth rates, Ki (i=1,2) is the carrying capacity,
φi (i=1,2) measures the effect of captures in prey and predator populations and
c is related with the time elapsed engaging with other predators. We will set
c = 1, so that we keep the effect of interferences between predators but simplify
the system (which already depends on many parameters). Summing up, system
(2.30) matches with system (2.13) and we seek for an appropriate change of
variables leading system (2.30) into its slow-fast form.

It is apparent that, at ε = 0, there exists an stable manifold of equilibria for
the fast dynamics which are stable but not asymptotically stable. Thus, condition
(C1) fails. In this context, according with [6], using the global variable

(2.31) n(τ) = n1(τ) + n2(τ),

allow us to write system (2.30) in the appropriate slow-fast form. Let us now
introduce frequencies as

(2.32) νi(τ) = ni(τ)/n(τ), i = 1, 2.
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In terms of ν1 and n system (2.30) reads as follows

(2.33)



ε
dν1

dt
= m2 − (m1 +m2)ν1 + ε (1− ν1)

[
r1(t)

(
1− ν1 n

K1(t)

)
ν1

−r2(t)

(
1− (1− ν1)n

K2(t)

)
+
φ2(t)p

1 + p

]
n,

dn

dt
=

[
r1(t)

(
1− ν1 n

K1(t)

)
ν1

+r2(t)

(
1− (1− ν1)n

K2(t)

)
(1− ν1)− φ2(t)(1− ν1)p

1 + p

]
n,

dp

dt
=

[
−λ3(t) +

φ3(t)(1− ν1)n

1 + p

]
p,

provided t = ετ . We refer to ν1 as the fast variable and to n, p as slow variables.
The following result is straightforward:

Lemma 2.2.4 Consider the boundary layer problem (2.19)

(2.34)
dν1

ds
= m2 − (m1 +m2)ν1

associated with system (2.33). It holds that

(2.35) ν∗1 :=
m2

m1 +m2

= ν∗1(n, p),

fulfills condition (C1) in theorem 2.2.1.

From now on, we note z′ = dz/dt. Thus, the aggregated system reads:

(2.36)


n′ = (a(t)− b(t)n)n− c(t)n

1 + p
p,

p′ = −λ(t)p+
f(t)n

1 + p
p,

where

(2.37)

ν∗2 = 1− ν∗1 , λ(t) = λ3(t), a(t) = r1(t)ν∗1 + r2(t)ν∗2 ,

b(t) =
r1(t)(ν∗1)2

K1(t)
+
r2(t)(ν∗2)2

K2(t)
, c(t) = φ2(t)ν∗2 , f(t) = φ3(t)ν∗2 .
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Analysis of the aggregated system.

In this section we carry out the study of system (2.36). For further purposes,
we recall that the functions defined in (2.37) are periodic, positive and bounded
away from zero, thus, they achieve strictly positive minimum and maximum,
which we note with subindex L and M , respectively:

(2.38)


aL ≤ a(t) ≤ aM bL ≤ b(t) ≤ bM
cL ≤ c(t) ≤ cM λL ≤ λ(t) ≤ λM
fL ≤ f(t) ≤ fM

System (2.36) always admits the trivial solution (n(t), p(t)) = (0, 0) for all
t ≥ t0. Moreover, if we let p(t) = 0, then system (2.36) simplifies in

(2.39) n′ = (a(t)− b(t)n)n, n(t0) = n0,

which was studied in [38], where it is shown that if a(t) > 0 and b(t) > 0 are
periodic functions with common period ω, then there exists an unique positive
periodic solution n∗0(t) for (2.39) which is globally asymptotically stable. We will
refer to (n∗0(t),0) as the semi-trivial solution of system (2.36). Later on, we will
relate the existence of an asymptotically stable positive periodic solution of sys-
tem (2.36) with the stability of the semi-trivial solution. Both positive semi-axes
are invariant sets for system (2.36).

Next, we describe the behavior of the solutions of the general system (2.30)
in terms of the solutions of the corresponding boundary layer problem and ag-
gregated system. In particular, we provide with conditions for the existence and
stability of positive and semi-trivial periodic solutions of system (2.36) and apply
theorem 2.2.1 and proposition 2.2.3.

Finding periodic solutions of periodic systems and deciding about its stability
may become a difficult task. The following lemmas will be used later on. The
firs one is a straightforward application of the Andronov Poincaré theorem and
provides with sufficient conditions for the existence of such a solutions. The
second one concerns ascertaining the stability of the zero solution of a planar
periodic linear system.

Lemma 2.2.5 Consider the ordinary differential equations system

(2.40)
dy

dt
= H(t,y)
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where y ∈ RN and function H = (h1, · · · , hN) ∈ C1(R × RN) is periodic on t
with period ω > 0. The existence of a bounded compact simply connected posi-
tively invariant region R for the solutions of system (2.40) implies the existence
of a periodic solution for system (2.40).

Proof.– Let us consider the ω-operator ϕω defined by

ϕω : R → R
y0 7→ ϕω(y) = ϕ(t0 + ω, t0,y0).

This operator maps each initial value y0 on the region R into the value ϕ(t0 +
ω, t0,y0) at time t = t0 + ω of the solution of system (2.20) starting at t = t0
at the initial value y0. This is a continuous map and by Brouwer’s fixed point
theorem this operator has, at least, one fixed point. This means that there exists
(at least) a solution ϕ of system (2.20) such that

ϕ(t0 + ω, t0,y0) = ϕ(t0, t0,y0).

Let us define ξ(t) = ϕ(t + ω). We recall that x∗(α,β) = x∗(α + ω,β), which
follows from the fact that function F is ω periodic on t. Then,

ξ′(t) = ϕ′(t+ ω)

= H(t+ ω,x∗(t+ ω, ϕ(t+ ω)), ϕ(t+ ω))

= H(t,x∗(t, ξ(t)), ξ(t))

Thus, ξ(t) is a solution of system (2.20) such that ξ(t0) = ϕ(t0 + ω) = ϕ(t0).
Because of the uniqueness of solutions, ϕ(t) = ξ(t) = ϕ(t+ ω), that is, ϕ(t) is
a periodic solution of system (2.20) with period ω, which is globally defined.

�

Lemma 2.2.6 Let bij(t), where i, j = 1, 2, be strictly positive periodic functions
with period ω. Then, the zero solution of system

(2.41)

{
z′1 = −b11(t)z1 − b12(t)z2

z′2 = b21(t)z1 − b22(t)z2

is uniformly asymptotically stable in the sense of Hoppensteadt.
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Proof.– We recall that bij(t), for i, j = 1, 2, are periodic positive functions. Let
us note the minimum and the maximum of each bij(t), for i, j = 1, 2, as 0 < bLij
and 0 < bMij , respectively. Before proceeding, we recall a simple fact. Consider
system

(2.42) Z ′(t) = BZ(t),

where B is given by

(2.43)

(
−b11 −b12

b21 −b22

)
,

with bij > 0, i, j = 1, 2 positive real numbers. It is well known that tr(B) < 0
and det(B) > 0 imply that the real part of the eigenvalues of (2.43) is strictly
negative. Thus, the zero solution of system (2.42) is uniformly asymptotically
stable with respect to the initial values. We mean that, given initial values Z0,
there exist positive constants K, α ∈ R+ such that

(2.44) ‖eBtZ0‖ ≤ Ke−αt ∀Z0; Z0 ≤ K.

Getting back to our problem, let us note

Y (t) =

(
y1(t)
y2(t)

)
Z(t) =

(
z1(t)
z2(t)

)
.

The study of the stability of the zero solution of system (2.41) is carried out by
means of a comparison method. Namely, given a solution of system (2.41) we
build up appropriate bounding linear systems with constant coefficient similar to
(2.42). The solutions of these bounding systems are upper and lower bounds for
the solution of system (2.41).

For this purpose, we use appropriate choices of bLij and bMij for constructing
each bounding system, depending on the sign of y1 and y2. Without lost of
generality (see comments before (2.44)), let us begin assuming that y1(t0) =
y0

1 > 0 and y2(t0) = y0
2 > 0. Then, in a neighborhood of t0, it follows that

(2.45)
−bM11y1(t)− bM12y2(t) ≤ y′1(t) ≤ −bL11y1(t)− bL12y2(t)

bL21y1(t)− bM22y2(t) ≤ y′2(t) ≤ bM21y1(t)− bL22y2(t)

Let us consider the following bounding systems
(2.46)

Z ′(t) = BLZ(t),
z1(t0) = y0

1,
z2(t0) = y0

2,


Y ′(t) = B(t)Y (t),
y1(t0) = y0

1,
y2(t0) = y0

2,


W ′(t) = BMW (t),
w1(t0) = y0

1,
w2(t0) = y0

2,
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where B(t) is that of equation (2.56) and BL and BM are given by

(2.47) BL =

(
−bM11 −bM12

bL21 −bM22

)
BM =

(
−bL11 −bL12

bM21 −bL22

)
the Comparison theorem yields

(2.48) z1(t) ≤ y1(t) ≤ w1(t), z2(t) ≤ y2(t) ≤ w2(t), t ≥ t0

at least while z1(t), z2(t), w1(t), w2(t) are kept positive, lets say, in an interval
I0 := [t0, t

∗), with t∗ > t0 (it may happen that t∗ = +∞).
Then, it follows that Z(t) and W (t) decrease exponentially fast, and so does

Y (t) in I0. It may happen that one of the components become zero after a
transient time, that is, t∗ < +∞. Let us assume, without lost of generality,
that y1(t∗) = 0 and y2(t∗) > 0. We recall that ‖Y (t∗)‖ < ‖Y (t0)‖. To carry
on approaching the zero solution, let us replace the bounding systems (2.46) by
other ones from t∗ on.

It is straightforward that there exists ε > 0 such that y1(t) < 0, y2(t) > 0
and ‖Y (t)‖ < ‖Y (t0)‖ for all t ∈ [t∗, t∗ + ε/2]. Thus, let us note

t1 = t∗ + ε/2 y1
1 = y1(t1) y1

2 = y2(t1).

Considering

(2.49)


Z ′(t) = BLZ(t)
z1(t1) = y1

1,
z2(t1) = y1

2,


Y ′(t) = B(t)Y (t)
y1(t1) = y1

1,
y2(t1) = y1

2,


W ′(t) = BMW (t)
w1(t1) = y1

1,
w2(t1) = y1

2,

where B(t) is that of equation (2.56) and BL and BM are now given by

(2.50) BL =

(
−bL11 −bM12

bM21 −bM22

)
BM =

(
−bM11 −bL12

bL21 −bL22

)
Despite of the change in the coefficients corresponding with z1 and w1, the left
and right hand side systems (2.49) fit in comments made at the beginning of
the proof. Therefore, we can repeat the previous argument, so that Y (t) keeps
approaching zero for t ∈ [t∗, t∗ +K) for certain K > 0.

Summing up, previous argument is independent on the sign of y1(t) and y2(t),
so that it holds whatever the sign of y1(t) and y2(t) is. On the other hand, Y (t)
approaches uniformly exponentially fast the zero solution because of the nature
of the bounding solutions.
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2.2.2 Periodic predator-prey system

Proposition 2.2.7 Consider the aggregated system (2.36)
n′ = (a(t)− b(t)n)n− c(t)n

1 + p
p,

p′ = −λ(t)p+
f(t)n

1 + p
p,

where the coefficients are defined in (2.37). If condition

(2.51) 0 <
λM
fL

<
aL
bM

holds, then the aggregated system (2.36) posses at least one positive periodic
solution (n∗(t), p∗(t)) which is uniformly asymptotically stable in the sense of
Hoppensteadt.

Proof.– The proof is decomposed in two steps. First, we find a convex invari-
ant region R for system (2.36). Applying lemma 2.2.5 yields the existence of
(n∗(t), p∗(t)). Then, following corollary 2.2.3 we linearize around (n∗(t), p∗(t))
and a suitable change of variables allow us to use lemma 2.2.6 to finish the proof.

Step 1. Existence of a positive periodic solution.
With the help of bounds (2.38), direct calculations yield curves bounding regions
of the fist quadrant where the sign of n′ and p′ are constant. Namely

(2.52)



n <
1

bM

[
aL − cM

p

1 + p

]
⇒ 0 < n′

n >
1

bL

[
aM − cL

p

1 + p

]
⇒ 0 > n′

p <
fL
λM

n− 1⇒ 0 < p′

p >
fM
λL

n− 1⇒ 0 > p′

Figure 2.1 shows such a curves.
Depending on the relative position of the nulclines of the bounding equations

(2.52) we can find different scenarios. We seek for a positively invariant, convex
regionR bounded away from the axes. We will build a rectangular regionR thus,
we shall find ri ∈ R, i = 1, · · · , 4 such that R := [r1, r2]× [r3, r4]. Keeping in
mind that n = (aL − cm)/bM is an asymptotic (vertical) line to n′+(n), we can
place r1 anywhere in (0, (aL−cm)/bM). Moreover, as n′+(n) < n′−(n) < aM/bL,
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nn

p p

aL−cM
bM

aL
bM

aM
bL

aM−cL
bL

λL
fM

λM
fL−1

Figure 2.1: Left and right: regions where the sign of n′ and p′ is constant.
The curves are noted, from left to right, n′+(n), n′−(n), p′−(n) and p′+(n).

we can choose r2 ≥ aM/bL. On the other hand, we recall that 0 < λM/fL <
aL/bM holds. Thus, the curve p = p′+(n) meets the vertical line n = aL/bM
at p̄ > 0 and we can let r3 ∈ (0, p̄). Finally, as p′−(n) > p′+(n) for n ≥ 0,
if ¯̄p is the intersection between p′−(n) and n = aM/bL, choosing r4 ≥ ¯̄p yields
R. We have found lower and upper bounds for the vertex ri ∈ R, i = 1, · · · , 4
of R. From now on, we will refer to R as the minimal of such a rectangles.
From the bounds for the derivatives of (n(t), p(t)) given by equation (2.52), the
comparison theorem and its construction, it follows that R = [r1, r2]× [r3, r4] is
the region we where looking for. Figure 2.2 shows an rectangular closed invariant
region R. Using proposition 2.2.5 yields that the (2.36) system has, at least, a

Figure 2.2: The invariant region R.

positive periodic solution, which is globally defined.
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2.2.2 Periodic predator-prey system

Step 2. The periodic solution is stable in the sense of condition (C2).
In order to assure the attraction of the periodic solution, according to corollary
2.2.3 we will study the stability of the zero solution of the variational problem
of (2.36) at y∗ (i.e., we linearize the system at the periodic solution). Thus, we
will deal with the system

(2.53) X ′ = A(t)X

where

(2.54) A(t) =

 a(t)− 2b(t)n0(t)− c(t)p0(t)

1 + p0(t)

−c(t)n0(t)

(1 + p0(t))2

f(t)p0(t)

1 + p0(t)
−λ(t) +

f(t)n0(t)

(1 + p0(t))2


and ϕ(t) = (n0(t), p0(t)) are the components of the periodic solution. Keeping
in mind the fact that

n′0(t)/n0(t) = a(t)− b(t)n0(t)− c(t)p0(t)

1 + p0(t)

p′0(t)/p0(t) = −λ(t) +
f(t)n0(t)

1 + p0(t)

the change of variables y1 = x1/n0, y2 = x2/p0 transforms the system (2.54)
into

(2.55) Y ′ = B(t)Y

where

(2.56) B(t) = (bij(t)) =

 −b(t)n0(t)
−c(t)p0(t)

(1 + p0(t))2

f(t)n0(t)

1 + p0(t)

−f(t)p0(t)n0(t)

(1 + p0(t))2

 ,

which is equivalent to (2.54). Applying lemma 2.2.6 finishes the proof.

�

The following result is a restatement of proposition 2.2.7 in terms of the com-
plete system (2.30). This corollary explains the behavior of the solutions of the
complete system (2.30) in terms of the solutions of the boundary layer problem
(2.35) and the aggregated system (2.36).
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Corollary 2.2.8 Consider the general system (2.30) and ν∗1 , the solution of the
boundary layer problem (2.34). Let us assume that condition

0 <
λM
fL

<
aL
bM

holds (see (2.37) for the definition of the coefficients of the previous expression).
Consider also (n∗(t), p∗(t)), the positive periodic solution of the aggregated sys-
tem (2.36) such that (n∗(t0), p∗(t0)) = (n0, p0), whose existence is guaranteed
by proposition 2.2.7. We note (nε1(t), nε2(t), pε(t)) the solution of the two time
scales system (2.30) with initial values (n̄01, n̄02, p̄0) at t = t0. Then, there exist
constants ε0 > 0 and δ > 0 such that for each ε ∈ (0, ε0)

lim
ε→0

(nε1(t), nε2(t), p(t)) = (ν∗1n
∗(t), (1− ν∗1)n∗(t), p∗(t))

uniformly on closed subintervals of [t0,∞) provided that

‖(n̄01, n̄02, p̄0)− (ν∗1n0, (1− ν∗1)n0, p0)‖ < δ.

Proof.– It is a direct consequence of theorem 2.2.1 and proposition 2.2.7.

�

The following results concern the stability of the semi-trivial solution of the
aggregated system (2.36). After stating and proving it, we will interpret this
result in terms of the general system (2.30).

Proposition 2.2.9 Let (n∗0(t), 0) be the semi-trivial solution of the aggregated
system (2.36) and

(2.57) a1 :=

∫ t0+ω

t0

(−λ(t) + f(t)n∗0(t)) dt.

If a1 < 0, then (n∗0(t), 0) is uniformly asymptotically stable in the sense of
Hoppensteadt.

Proof.– Linearizing the aggregated system (2.36) around the semi-trivial solution
yields

(2.58)

(
x′1
x′2

)
=

(
a(t)− 2b(t)n∗0(t) −c(t)n∗0(t)

0 −λ(t) + f(t)n∗0(t)

)(
x1

x2

)
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2.2.2 Periodic predator-prey system

This is a linear periodic system and we need calculate the Floquet exponents in
order to study its stability. System (2.58) is a diagonal one and can be explicitly
solved. The second equation in (2.58) is

x′2 = (−λ(t) + f(t)n∗0(t))x2

and its solution is given by

x2(t) = x2(t0) exp

(∫ t

t0

−λ(s) + f(s)n∗0(s)ds

)
.

Replacing this expression into the first equation and solving it we get a funda-
mental system:

Φ(t) =

 exp
(∫ t

t0
(a(s)− 2b(s)n∗0(s))ds

)
Φ12(t)

0 exp
(∫ t

t0
−λ(s) + f(s)n∗0(s)ds

) 
where Φ12(t) is a complex expression. Moreover, the Floquet exponents are given
by

λ1 = exp

(∫ t0+ω

t0

(a(s)− 2b(s)n∗0(s))ds

)
,

λ2 = exp

(∫ t0+ω

t0

−λ(s) + f(s)n∗0(s)ds

)
.

On the one hand, |λ2| < 1 because of the assumption a1 < 0. On the other
hand, |λ1| < 1 because b(s)n∗0(s) > 0 and∫ t0+ω

t0

(a(s)− b(s)n∗0(s))ds = 0.

�

In particular, we provide with a condition on the aggregated system (2.36) which
implies the exclusion (extinction) of predators in the complete system (2.30) at
low predator population densities.

Corollary 2.2.10 Consider the general system (2.30), ν∗1 , the solution of the
boundary layer problem (2.34), (n∗0(t), 0), the semi-trivial solution of the aggre-
gated system (2.36) such that (n∗0(t0), 0) = (n̂0, 0) and (nε1(t), nε2(t), p(t)) is the
solution of the two time scales model (2.30) with initial values (n̄01, n̄02, p̄0) at
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t = t0. If a1 < 0, where a1 is that of (2.57), then there exist constants ε0 > 0
and δ > 0 such that for each ε ∈ (0, ε0)

lim
ε→0

(nε1(t), nε2(t), pε(t)) = (ν∗1n
∗
0(t), (1− ν∗1)n∗0(t), 0)

uniformly on closed subintervals of [t0,∞) provided that

‖(n̄01, n̄02, p̄0)− (ν∗1 n̂0, (1− ν∗1)n̂0, 0)‖ < δ.

Proof.– It is a direct consequence of theorem 2.2.1 and proposition 2.2.9.

�

The following is a particular case situation where the previous result holds. Its
importance relies in being stated in terms of the maximum and minimum values
of the coefficients of aggregated systems.

Corollary 2.2.11 Let us assume that condition

(2.59)
aM
bL

<
λL
fM

,

holds. Consider ν∗1 is that of (2.35), (n∗0(t), 0) is the semi-trivial solution of the
aggregated system (2.36) such that (n∗0(t0), 0) = (n̂0, 0) and (nε1(t), nε2(t), p(t))
is the solution of two time scales system (2.30) with initial values (n̄01, n̄02, p̄0)
at t = t0. Then, there exist ε0 > 0 and δ > 0 such that for each ε ∈ (0, ε0)

lim
ε→0

(nε1(t), nε2(t), pε(t)) = (ν∗1n
∗
0(t), (1− ν∗1)n∗0(t), 0)

uniformly on closed subintervals of [t0,∞) provided that

‖(n̄01, n̄02, p̄0)− (ν∗1 n̂0, (1− ν∗1)n̂0, 0)‖ < δ.

Proof.– It follows from the proof of proposition 2.2.9. Using the bounds (2.38)
for the coefficients we get bounds for the solution

xL2 (t) := x2(t0)e(−λM+fLn
∗
0L

)(t−t0) ≤ x2(t) ≤ x2(t0)e(−λL+fMn
∗
0M

)(t−t0) =: xM2 (t).

The fact that
aL
bM
≤ n∗0(t) ≤ aM

bL
finishes the proof.

�
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2.2.2 Periodic predator-prey system

Conditions (2.51) and (2.59) state whether predator population is excluded
or not. Nevertheless, these conditions do not cover all the possible cases. Thus,
we turn out attention to the uncovered cases. Namely, we consider that

(2.60)
aL
bM

<
λM
fL

and
λL
fM

<
aM
bL
.

These cases can not be studied analytically. Numerical experiments show that,
within this case, we can have either a positive solution (coexistence) or a semi-
trivial omega limit (predators exclusion) for system (2.30). Thus, either coexis-
tence or exclusion of predators population can happen. We illustrate these facts
through two different numerical simulations.

Coexistence. - We set the values of the coefficients of the aggregated
system (see figure 2.3) so that condition (2.60) holds. For these coefficient
values, we represent, the state variables versus time showing that a positive
periodic orbit exists and a phase portrait illustrating the positive periodic orbit.
In addition we have included a comparison of the total prey/predator density
simulated with the full and the aggregated model. Let us assume that there
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Figure 2.3: Left: state variables vs time: a positive periodic orbit exists.
Right: phase portrait of the aggregated model illustrating the positive peri-
odic orbit. Parameter values m1 = 1 m2 = 1, r1L = 1, r2L = 0.1, r1M = 3,
r2M = 2.1, φ2L = 0.1, φ3L = 0.8∗φ2L, φ2M = 2.1, φ3M = φ2M∗0.8, λ3L = 0.01,
λ3M = 1.01, ω = 5, ε = 0.02, K1L = 5, K2L = 1 ,K1M = 9, K2M = 5,

exists a positive solution for the aggregated system (2.36) for the parameter
values listed above. We can go through step two in the proof of proposition
2.2.7 (see lemma 2.2.6) to ensure that, in fact, every positive periodic solution
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is uniformly-asymptotically stable. Thus, condition (2.21) in (C2) holds and
theorem 2.2.1 holds. The simulation in figure 2.4 (keeping the parameter values
in figure 2.3) illustrates this fact:
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Figure 2.4: Comparison of the total prey density (left) and total predator
density (right) simulated with the full and the aggregated model. Parameter
values are these of figure 2.3

Predators exclusion. - We set now new values for the coefficients of the
aggregated system (see figure 2.5) so that condition (2.60) holds too. Again, for
these parameter values, we represent the state variables in front of time showing
that the predator can be excluded. Besides, the corresponding phase portrait
illustrates the exclusion scenario.

In this case, we could not establish analytically the stability of the semi-trivial.
Nevertheless, the simulation in figure 2.6 shows that results obtained with the
parameter values stated in figure 2.5 for the general and aggregated system are
coherent:
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Figure 2.5: Left: state variables vs time: prey permanence; predators extinc-
tion. Right: phase portrait of the aggregated model illustrating predators
exclusion. Parameter values: m1 = 1, m2 = 1, r1L = 1, r2L = 0.1, r1M = 3,
r2M = 2.1, φ2L = 0.1, φ3L = 0.2∗φ2L, φ2M = 2.1, φ3M = 0.2∗φ2M , λ3L = 0.6,
λ3M = 1.6, ω = 5, ε = 0.02, K1L = 5, K2L = 1, K1M = 9, K2M = 5.
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Figure 2.6: Comparison of the total prey density (left) and total predator
density (right) simulated with the full and the aggregated model. Parameter
values are these stated in figure 2.5.

Conclusions.

Our analysis of the aggregated system yields sufficient conditions for prey predator
coexistence and predator exclusion in terms of the relative shape of certain ”vital
parameters” of the aggregated problem. Namely, comparing

aL
bM

with
λM
fL

and
λL
fM

with
aM
bL
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In a non spatially distributed system, a(t)/b(t) stands for the carrying capacity
of the prey habitat. According to (2.37), it follows that

a(t)

b(t)
=

(r1(t)ν∗1 + r2(t)ν∗2)K1(t)K2(t)

r1(t)(ν∗1)2K2(t) + r2(t)(ν∗2)2K1(t)
.

which is the carrying capacity for the spatially distributed prey population when
we consider fast migrations and periodic coefficients at each region. On the
other hand, λ(t)/f(t) stands for the ratio between predator mortality rate and
benefits of captures for predators. Thus, we have stated conditions ensuring the
existence of a coexistence state (condition (2.51)) and the exclusion of predators
at low population densities (condition (2.59)) in terms of the functions involved
in a(t)/b(t) and λ(t)/f(t). Summing up:

• There exists an attracting periodic coexistence state if
λM
fL

<
aL
bM

.

• Predators die out at low predator population densities when
aM
bL

<
λL
fM

.

• There exist a range of intermediate cases

aL
bM

<
λM
fL

and
λL
fM

<
aM
bL

which are indefinite meaning that both predators exclusion or coexistence
can arise.

In the context of the system we are dealing with, coefficients a(t), b(t) and f(t)
depend on ν∗1 , which is related with prey migrations. In fact, from the definition
of the coefficients (2.38), even small changes in ν∗1 may entail a change in the
stability of the semi-trivial solution of the aggregated system and thus, induce
the extinction of predators at low predator population density.

2.2.3 Periodic multi-strain epidemics model with pe-
riodic fast migrations.

Periodic patterns have been observed in the evolution of many infectious diseases
as influenza, pertussis, mumps or chicken-pox. A classical example is the weekly
measles reports in England and Wales for the period 1948-1968, [2]. Scientists
have focused on explaining these periodic behaviors, finding out a variety of
plausible scenarios [49]. Diseases with periodic transmission rates are among the
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possible explanations. After the pioneering work of Hethcote [48], several authors
have pursued his approach studying periodic, or more general nonautonomous,
SIS or SEIR models, see [92] for a review.

A central problem in the analysis of nonautonomous epidemic models is defin-
ing the reproduction number (the expected number of secondary cases caused
by a primary case in a fully susceptible population) which value, greater or lower
than 1, characterizes in the autonomous case the existence of an epidemic or
the disease eradication, respectively. Ma and Ma [62] suggested defining the
reproduction numbers of several periodic SIS and SEIR models through the re-
production numbers of the corresponding averaged systems (the autonomous
systems obtained by replacing the time-varying parameters with their long-term
time averages) that they denoted R̄. With this definition, they found that the
free-disease equilibrium is always reached when R̄ < 1 though this is not a
necessary condition; they showed, via numerical simulations, that it might hap-
pen R̄ > 1 together with the number of infected individuals tending to zero.
Recently, Martcheva [65] has considered a nonautonomous multi-strain SIS epi-
demic model with periodic coefficients and has derived reproduction numbers and
invasion reproduction numbers (the number of cases strain i will generate when
strain j is at equilibrium) which agree with their counterparts in autonomous
epidemic models ( [62] and [99]); conditions on reproduction numbers ensure
local and global stability of the disease-free equilibrium, and conditions on inva-
sion reproduction numbers are shown to yield the local stability of a single-strain
periodic solution.

The transmission of an infectious disease is positively related with contacts
between individuals. Therefore, migrations in spatially distributed populations
become a crucial component of the propagation process of an epidemic disease:
it is of interest to study models coupling migrations and epidemic processes.
In Kouokam et al [56] it is proposed an autonomous system coupling constant
migrations and SIRS epidemics local models where migrations rates are consid-
ered to be much higher than epidemics rates; the use of aggregation techniques
allowed defining the reproduction number corresponding to the complete model
through the aggregated (reduced) system and so carrying out a tractable math-
ematical analysis.

We propose a nonautonomous system coupling migrations and local multi-
strain SIS epidemic models similar to that found in [65]. The individuals in
the population move between different spatial areas with periodic rates and the
coefficients in the local epidemic models are also periodic. The migration process
acts at a faster time scale than the epidemic one, being the common period of
all rates of the order of the slow time scale.
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Next, we present the aforementioned model. Then, applying the reduction
procedure described in subsection 2.2.1 we transform the initial spatially explicit
model into a particular case of the non-spatialized model treated in [65]. In
particular, we are able to define reproduction numbers and invasion reproduction
numbers for the complete model through those of the reduced system and to
apply the results in [65] to the study of the initial model. That is, analyzing the
reduced system we provide with sufficient conditions (in terms of the parameters
of the model) for the asymptotic stability of the free disease state and of the
single strain state of the original system (2.61). Even if such a conditions are
general ones, we study two important particular cases. On the one hand we
analyze the effect of fast migrations comparing these stability conditions in an
homogeneous patchy environment and in a single patch environment. On the
other hand, we study the effect of fast periodic migrations linking two regions
where a multi-strain epidemic SIS takes place with different intensities. We
illustrate this scenario with numerical simulations.

The model: multi strain SIS epidemic model with fast migrations.

We consider a population inhabiting a p patches environment. Individuals move
between patches and an infection evolves within each patch according to a SIS
model with multiple strains. Let Sk(τ) denote the number of susceptible individ-
uals in patch k = 1, . . . , p at time τ . In each patch k the number of individuals
infected by strain j = 1, · · · , n is denoted by Ijk(τ). We assume that migrations
act at a faster time scale than the changes of state with respect to infection, so
individuals leaving a patch in a particular infection state get to the arrival patch
in the same state. The migration rate from patch k to patch i for susceptible
is denoted by mik and for infected by strain j by mj

ik. The ratio of migrations
to infection time scales is represented by the small parameter ε > 0. The model
takes the form:
(2.61)

dSk
dτ

= −
p∑
i=1
i 6=k

mikSk +

p∑
i=1
i 6=k

mkiSi (k = 1, . . . , p; j = 1, . . . , n)

+ε

[
µk

(
Sk +

n∑
j=1

Ijk

)
−

n∑
j=1

βjkSkIjk − µkSk +
n∑
j=1

γjkIjk

]

dIjk
dτ

= −
p∑
i=1
i 6=k

mj
ikIjk +

p∑
i=1
i 6=k

mj
kiIji + ε [βjkSkIjk − (µk + γjk)Ijk]
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The local SIS epidemic model with multiple strains for each patch k = 1, . . . , p
is represented by the terms preceded by ε. The mortality rate is the same for
all individuals in the same patch and denoted by µk. We assume that all newly
recruited individuals are susceptible and the recruitment rate equals mortality
rate so that in absence of migrations the total population in a patch remains
constant. The transmission rate of strain j = 1, . . . , n in patch k is denoted by
βjk. Finally we denote γjk the recovery rate from strain j in patch k.

We are considering two different time scales. All the rates (migration, death,
recruitment, transmission and recovery) appearing in the model are assumed to
be periodic functions of time and depend on ετ .

Reduction of the model: the fast equilibriums and the aggregated
problem.

System (2.61) matches with system (2.13) and we seek for an appropriate change
of variables leading system (2.30) into its slow-fast form. The choice is straight-
forward because the total number of susceptible individuals and of individuals
infected by each of the different strains are variables that keep constant through
migrations, the fast dynamics, and so evolve at the slow time scale, the one that
rules the infection process. Let us define:

S =

p∑
k=1

Sk and Ij =

p∑
k=1

Ijk for j = 1, · · · , n.

We point out that these variables are kept constant by migrations. We propose
the following transformation of variables:

n = (S1, . . . , Sp, I11, . . . , I1p, . . . , In1, . . . , Inp) ∈ Rp(n+1)

is transformed into (x,y) ∈ R(p−1)(n+1) × Rn+1 where

x = (S1, . . . , Sp−1, I11, . . . , I1 p−1, . . . , In1, . . . , In p−1), y = (S, I1, . . . , In).

To meet condition (C1) in theorem 2.2.1 we need to impose the condition on
migration rates that we present next. Let us call M = (mki)1≤k,i≤p, where
mkk = −∑p

i=1
i 6=k

mik, the matrix of susceptible individuals migration rates and

M j = (mj
ki)1≤k,i≤p, where mj

kk = −∑p
i=1
i 6=k

mj
ik, the corresponding matrices of

migration rates for individuals infected by strains j = 1, · · · , n. We recall that
all these matrices are time dependent.
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In what follows we assume that matrices M(t),M1(t), . . . ,Mn(t) are irre-
ducible for every t.

As a consequence 0 is a simple eigenvalue larger than the real part of any other
eigenvalue. The left eigenspace of each of these matrices associated with the
eigenvalue 0 is generated by vector 1 := (1, . . . , 1) ∈ Rp. The right eigenspace
is generated by vectors

(2.62) ν(t) = (ν1(t), . . . ,νp(t)),

ν1(t) = (ν1
1(t), . . . , ν1

p(t)), ..., νn(t) = (νn1 (t), . . . , νnp (t)), respectively, which
we choose to have positive entries that sum up to 1 and so they are unique.

The entries of these eigenvectors, ν(t) and νj(t) (j = 1, · · · , n), represent
the stable proportions that the distribution among patches of the different types
of individuals would attain, at the fast time scale, if the migration process were
the only change affecting the population.

The assumption of matrices M(t),M1(t), . . . ,Mn(t) being irreducible for
every t together with the fact that the dependence on t is periodic yield straight-
forwardly that condition (C1) in theorem 2.2.1 is met. Moreover, to obtain the
aggregated system (2.20) we just need to sum up in system (2.61) the corre-
sponding equations to each of the global variables, S and Ij (j = 1, · · · , n),
performing the following substitutions to introduce the equilibria obtained from
the boundary layer system:

Sk = νk(t)S and Ijk = νjk(t)Ij for every j = 1, · · · , n and k = 1, · · · , p.

Finally, the corresponding aggregated system (2.63) becomes

(2.63)



dS

dt
=

n∑
j=1

µ∗j(t)Ij −
n∑
j=1

β∗j (t)SIj +
n∑
j=1

γ∗j (t)Ij,

dIj
dt

= β∗j (t)SIj −
(
µ∗j(t) + γ∗j (t)

)
Ij,

S(t0) = S0 =

p∑
k=1

Sk,0, Ij(t0) = Ij,0 =

p∑
k=1

Ijk,0, j = 1, · · · , n,
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2.2.3. Multi-strain epidemics model

provided that

(2.64)

µ∗j(t) =

p∑
k=1

µk(t)ν
j
k(t), γ∗j (t) =

p∑
k=1

γjk(t)ν
j
k(t),

β∗j (t) =

p∑
k=1

βjk(t)νk(t)ν
j
k(t).

Reproduction number for spatially distributed SIS models.

According to our settings, total population N(t) := S(t) +
n∑
j=1

Ij verifies

N ′(t) = 0.

Without lost of generality, we assume that total population is constant and
normalized to one, that is, we set

S(t) +
n∑
j=1

Ij(t) = 1.

Using theorem 2.2.1 allow us to rescue some results in [65] for the spatially dis-
tributed two time scales system (2.61). Because of the nature of Hoppensteadt
results, we can recover information concerning periodic solutions of the aggre-
gated system which are stable in the sense of (2.21). System (2.63) was analyzed
in [65]. In the following paragraphs we reformulate those results in [65] in terms
of the system (2.61) aided by theorem 2.2.1 and according to our settings.

Given an ω-periodic function, we note 〈f(t)〉 := 1
ω

∫ r+ω
r

f(s)ds. Then, we define
the global reproduction numbers as

(2.65) R∗j :=
〈β∗j (t)〉

〈µ∗j(t)〉+ 〈γ∗j (t)〉
j = 1, · · · , N

These global reproduction numbers are defined (see comment after theorem
2.2.12 as well) in terms of the coefficients of the aggregated problem. As we
will see in theorems 2.2.12 and 2.2.14, R∗j are related with the stability of the
free disease state and the single strain state of the spatially distributed system
(2.61).
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The coefficients involved in (2.65) (see its definition (2.64)) depend on the
equilibrium of the boundary layer system. Therefore, migration rates have an
influence on the value of the global reproduction numbers.

In the sequel we label the solutions of the complete system (2.61) with a
super index ε in order to stress the fact that such a system can be seen as a
family of systems parameterized by ε.

Theorem 2.2.12 Consider ν(t) given by (2.62) and

(Sε1(t), · · · , Sεp(t); Iε11(t), · · · , Iε1p(t); · · · ; Iεn1(t), · · · , Iεnp(t)),

the solution of the complete system (2.61) with initial values at t = t0

(S0ε
1 , · · · , S0ε

p ; I0ε
11 , · · · , I0ε

1p ; · · · ; I0ε
n1, · · · , I0ε

np).

If R∗j < 1 for j = 1, · · · , n then there exist δ > 0 and ε0 > 0 such that for
ε ∈ (0, ε0) it follows that

(2.66) lim
ε→0

(Sε1(t), · · · , Sεp(t), Iε11(t), · · · , Iεnp(t)) = (ν(t); 0, · · · , 0)

uniformly in closed subintervals of I = [t0,∞), provided that

dist
(
(S0ε

1 , S
0ε
2 , I

0ε
11 , · · · , I0ε

np), (ν(t0); 0, · · · , 0)
)
< δ.

Proof.– It is a direct consequence of proposition 2.1 in [65] and theorem 2.2.1
herein.

�

In this context, the reproduction numbers (2.65) are nothing but the Floquet
multipliers of the variational system corresponding to system (2.63) with respect
to the free disease solution E0. Therefore, R∗j are related with the stability of E0

and with the eradication of the epidemic.
Sometimes, in multiple strain epidemics, one of these strains manages to

persist while the others die out. This fact (a sort of competitive exclusion) is
known as single strain solution. The global reproduction numbers are related
with the existence of such a solution for the aggregated problem;

Proposition 2.2.13 Assume that R∗i > 1. Then, there exists a single strain
periodic solution Ei = (0, · · · , 0, ξi, 0, · · · , 0) for the aggregated system (2.63).

Proof.– It is a direct consequence of theorem 3.1 in [65].
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�

The stability of the periodic single strain solution and the exclusion of any
other strain are, of course, related. The stability of Ei depends on the Floquet
multipliers of the variational system with respect to the single strain solution,
which are called invasion reproduction numbers (see [65]). We define the global
invasion reproduction number of the strain j = 1, · · · , n, j 6= i at the single
strain equilibrium of strain i as

(2.67) R̂∗ij :=

〈
β∗j (1− ξi)

〉〈
µ∗j
〉

+
〈
γ∗j
〉

Besides, the coefficients of the global invasion reproduction numbers depend
on migration rates and, thus, extend those defined in [65] to the two time scales
spatially distributed framework.

Theorem 2.2.14 Consider ν(t) and νj(t), for j = 1, . . . , p, given by (2.62) and
the solution of the complete system (2.61) (Sε1(t), · · · , Sεp(t); Iε11(t), · · · , Iεnp(t))
with initial value at t = t0 Φ(t0) := (S0ε

1 , · · · , S0ε
p ; I0ε

11 , · · · , I0ε
np). If

R∗i > 1, and R̂∗ij < 1, ∀j 6= i,

then, there exist δ > 0 and ε0 > 0 such that for ε ∈ (0, ε0) it follows that

(2.68)

lim
ε→0

(Sε1(t), · · · , Sεp(t); Iε11(t), · · · , Iεnp(t)) =

(ν(t)(1− ξi(t)), 0, · · · , 0,νi(t)ξi(t), · · · , 0)

uniformly in closed subintervals of [t0,∞), provided that

dist
(
Φ(t0), (ν(t0)(1− ξi(t0)), 0, · · · , 0,νi(t0)ξi(t0), 0, · · · , 0)

)
< δ.

Proof.– It is a direct consequence of theorem 4.1 in [65] and theorem 2.2.1.

�

Figuring out a relation between reproduction number at patch k of strain j in
absence of migrations

Rjk :=
〈βjk(t)〉

〈µk(t)〉+ 〈γjk(t)〉
, k = 1, · · · , p,
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the corresponding invasion reproduction number at patch k of strain j in absence
of migrations

R̂k
j :=

〈βjk(t)(1− ξik(t))〉
〈µjk(t)〉+ 〈γjk(t)〉

, k = 1, · · · , p,

(bothRjk and R̂k
j were defined in [65] asRj and R̂j as it was just one patch) and

their global counterparts R∗j , R̂∗kj should provide a comprehension of the global
outcome of the epidemic process in terms of its local behavior. Unfortunately, we
could not derive such a general relation; there are too many parameters involved
in the definitions in the spatially distributed case. In the sequel we analyze two
different cases with its own interest. We show that periodic fast migrations can
induce behaviors different from those expected when patches are isolated. Thus,
we extract some conclusions related with having considered time scales and fast
migrations when handling epidemic models.

The role of fast migrations. In order to understand the role of migrations,
we consider that epidemics behave exactly the same in all patches, that is

(2.69)


βj1(t) = · · · = βjp(t),
γj1(t) = · · · = γjp(t),
µ1(t) = · · · = µp(t).

Keeping in mind this configuration, we proceed to compare R∗j and Rjk. We
note Rjk by Rj to stress the fact that local reproduction numbers are equal
at every patch, as the corresponding epidemic parameters are the same every-
where. According with condition (2.69) we note βj, γj and µ the corresponding
parameter values (we have dropped the subindex labeling each region because of
condition (2.69)).

Theorem 2.2.15 Let us assume conditions (2.69). Then, it follows that

R∗j < Rj, j = 1, · · · , n.

In addition,

(2.70) R∗j < 1 < Rj, j = 1, · · · , n

if, and only if,

(2.71) 〈βj(t)
p∑

h=1

νh(t)ν
h(t)〉 < 〈µ(t)〉+ 〈γj(t)〉 < 〈βj(t)〉 .
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Proof.– Thanks to (2.69), it follows that

Rjk =
〈βjk(t)〉

〈µjk(t)〉+ 〈γjk(t)〉
=

〈βj(t)〉
〈µ(t)〉+ 〈γj(t)〉

k = 1, · · · , p.

On the other hand, we get from (2.64) and (2.69) that

µ∗j(t) =

p∑
k=1

µk(t)ν
j
k(t) = µ(t)

p∑
k=1

νjk(t) = µ(t)

γ∗j (t) =

p∑
k=1

γjk(t)ν
j
k(t) = γj(t)

p∑
k=1

νjk(t) = γj(t)

which implies

R∗j =
〈β∗j (t)〉

〈µ∗j(t)〉+ 〈γ∗j (t)〉
=

〈β∗j (t)〉
〈µ(t)〉+ 〈γj(t)〉

in addition
β∗j (t) =

∑p
k=1 βjk(t)νk(t)ν

j
k(t)

= βj(t)

p∑
k=1

νk(t)ν
j
k(t) < βj(t)

because νk(t), ν
j
k(t) ∈ [0, 1] and

∑p
k=1 νk(t) = 1 =

∑p
k=1 ν

j
k(t) for all t and j.

Finally, condition R∗j < 1 < Rjk is equivalent to

〈βj(t)
∑p

k=1 νk(t)ν
j
k(t)〉

〈µ(t)〉+ 〈γj(t)〉
< 1 <

〈βj(t)〉
〈µ(t)〉+ 〈γj(t)〉

which is still equivalent to

〈βj(t)
p∑

k=1

νk(t)ν
j
k(t)〉 < 〈µ(t)〉+ 〈γj(t)〉 < 〈βj(t)〉

�

Theorem 2.2.15 provides conditions for R∗j < 1 < Rj to hold. On the one
hand, condition 1 < Rj implies that, in absence of migrations, the free disease
equilibrium is unstable at each patch and an endemic disease scenario arises
at each region (see [65]), while condition R∗j < 1 (see theorem 2.2.12) for
the aggregated system implies that the free disease state is stable when fast
migrations exists and the disease is globally eradicated.

This result suggest fast migrations as a process that stimulates stability for
the free disease state, at least according with the conditions stated in theorem
2.2.12.

121



Chapter 2 Continuous dynamical systems.
2.2 Slowly varying periodic dynamics

Asymmetric patches. Now we let disease behave different in each patch.
Namely, we assume that regions can be grouped in two disjoint sets according
with the following: transmission rates are larger at regions of the first subgroup,
while recovery rates are larger at patches of the second subgroup. We mean that
the disease has stronger incidence in patches belonging to subgroup 1 than in
those belonging to subgroup 2. Without lost of generality, we restrict ourselves
to a two patches environment, thus, we consider the following conditions

(2.72)


βj2(t) < βj1(t),
γj1(t) < γj2(t),

µ1(t) = µ2(t) ≡ µ(t).
j = 1, · · · , n.

Then, direct calculations yield

Theorem 2.2.16 Whenever (2.72) holds, it follows that

(2.73) Rj2 < R∗j < Rj1, j = 1, · · · , n.

Proof.– This proof is similar to that of theorem 2.2.15. According with (2.64)
and (2.72) it follows that

µ∗j(t) =
2∑

k=1

µk(t)ν
j
k(t) = µ(t),

γj1(t) ≤ γ∗j (t) =
2∑

k=1

γjk(t)ν
j
k(t) ≤ γj2(t)

and

βj1(t) ≤ β∗j (t) =
2∑

k=1

βjk(t)νk(t)ν
j
k(t) ≤ βj2(t),

which concludes the proof.

�

Let us discuss the implications of relation (2.73). As in the symmetric patches
case, considering fast migrations allows the complete model to exhibit a global
behavior qualitatively different from what is expected when individuals do not
migrate. On the one hand, relation (2.73) allows

(2.74) Ri2 < R∗i < 1 < Ri1.
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Thus, in absence of migration, strain i persists at region 1 while this strain dies
out at the second region. Nevertheless, migrations induce the extinction of strain
i at both regions. It is not difficult to obtain necessary and sufficient conditions
for condition (2.74) to hold (see the proof of theorem 2.2.15). We do not include
such expression because it is not as compact as (2.71).

On the other hand, from (2.73), let us assume that Ri2 < 1 < R∗i < Ri1. If
both patches were isolated, according to [65], strain i can not persist at path 2.
Nevertheless, if, in addition, R∗j < 1 ∀j 6= i, R∗i > 1 and R̂∗ij < 1 ∀j 6= i, the
proposition 2.2.13 applies and strain i also persists in patch 2.

In figure 2.7 we illustrate the case in which one of the strains is excluded and
the other coexists (through individuals infected by this strain) with susceptible
individuals. We point out the agreement between both the aggregated system
(in green) and the original system (in blue), which increases as ε→ 0.
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Figure 2.7: We consider two patches and two strain. Top, bottom left and
bottom right figures display the solutions to the complete (blue) and the
aggregated model (green) corresponding to the total number of susceptible
and infected by strain 1 and infected by strain 2, resp. One of the strain
is excluded and the other one coexists with the susceptible. Parameters:
m1(t) = 1 + 0.1 cos(t), m2(t) = 2m1(t), m11(t) = 1 + 0.5 cos(t) = m21(t),
m12(t) = 2 + cos(t), m22(t) = 2 + 0.5 cos(t), µ1(t) = 1 + 0.2 cos(t) = µ2(t),
β11(t) = 1 + 0.5 cos(t), β21(t) = 2 + cos(t), β12(t) = 0.4 + 0.2 cos(t), β22(t) =
0.5 + 0.2 cos(t), γ11 = 0.2 + 0.1 cos(t), γ21 = 0.25 + 0.2 cos(t), γ12 = 0.1 +
0.1 cos(t), γ22 = 0.15 + 0.1 cos(t), ε = 0, 1.

123



Chapter 2 Continuous dynamical systems.
2.3 Asymptotically autonomous systems

2.3 Asymptotically autonomous systems.

In this section we deal with another category of two time scales nonautonomous
ordinary differential equation systems.

Some environmental conditions change with time but do not variate following
periodic patterns. Among other possible behaviors, we find systems containing
time depending parameters which stabilize ”quickly”. This idea can be described
through nonautonomous models, let say y′ = f(t, y), and such that there ex-
ists the limit g(y) = lim

t→∞
f(t, y). If this limit is uniform on compacts set, the

corresponding system is known as asymptotically autonomous systems. From
the pioneer works of Markus [64] and Thieme [98], several authors (see [58] and
references therein) have focused on such kind of systems to answer control prob-
lems. The interest is focused on ascertaining which dynamical properties of the
nonautonomous system are kept by its limit system y′ = f(y). In terms of con-
trol problems, the management of the system concerns the control of such a limit.

On the other hand, this assumption fits in the framework of two time scale
systems considering nonautonomous systems whose coefficients evolve (some-
how) according with the fast time unit. We carry on with the approximate
aggregation of systems of the form

(2.75)
dn

dτ
= f(τ,n) + εs(τ,n)

where n = (n1, · · · , nN) ∈ ΩN , where ΩN ⊂ RN is a open bounded nonempty
set and f = (f1, · · · , fN), s = (s1, · · · , sN) ∈ C2(I × ΩN), where I = [t0,∞).

2.3.1 An aggregation theorem.

As we did before, we assume that an appropriate transformation of variables
n ∈ RN −→ (x, y) ∈ RN−k × Rk is available so that problem (2.75) can be
written in the slow-fast form, namely

(2.76)


dx

dτ
= F(τ,x,y) + εS(τ,x,y),

dy

dτ
= εG(τ,x,y),

where where x, y stand for the fast and slow variables, respectively. This case
was not explicitly covered in [52] but the same proof applies for. It turns out
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that writing system (2.76) in terms of the slow variable yields

(2.77)


ε
dx

dt
= F(t/ε,x,y) + εS(t/ε,x,y),

dy

dt
= εG(t/ε,x,y),

It is apparent that an extra condition is needed in order to get the corresponding
boundary layer problem and aggregated system. The natural condition is asking
for the existence of the limit when we let ε → 0, as collected in the following
definition:

Definition 2.3.1 A function H ∈ C(R×RN) is said to be asymptotically auto-
nomous, if there exists a function H̄ ∈ C(RN) such that the limit

lim
ξ→∞

H(ξ, z) = H̄(z)

exists and it is locally uniform (that is, uniform on compact sets of the RN).

Theorem 2.3.1 Consider system (2.77) with F, S, G ∈ C2(I × SR) asymptot-
ically autonomous, where I = [t0∞) and

SR :=
{

(x,y) ∈ RN−k × Rk; ‖y − y0‖ ≤ R, ‖x− x∗(y)‖ ≤ R
}
,

with R > 0, y0 and x∗(y) to be defined. Thus, for all H ∈ {F, S, G} there
exists a function H̄ ∈ C2(SR) such that the limit

lim
ξ→∞

H(ξ,x,y) = H̄(x,y)

is uniform on compact sets of SR. Assume the following conditions.

(C1) There exists an unique continuum of equilibria x∗(β) (see remark 2.3.2),
with β ∈ Rk and ‖β − y0‖ < R, for equation

dx

ds
= F̄(x,β)

such that the real parts of the eigenvalues of JxF̄(x∗(β),β) are negative
and bounded away from zero uniformly in β (J stands for the Jacobian
matrix).
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(C2) The aggregated problem

(2.78)
dy

dt
= Ḡ(x∗(y),y)

where x∗(α,β) is that of condition (C1), possesses a solution y∗(t, t0,y0)
defined for all t ∈ I which is uniformly-asymptotically stable. We mean
that there exists R > 0 such that for any other solution Φ(t, t0, ȳ0) of
system (2.20) with ‖ȳ0−y0‖ ≤ R, there exist functions d ∈ K and σ ∈ S
such that

(2.79) ‖y∗(t, t0,y0)− Φ(t, t0, ȳ0)‖ ≤ d (‖y0 − ȳ0‖)σ(t− t0).

Then, there exists R > 0 such that and each (x̄0, ȳ0) ∈ RN−k × Rk such that
‖(x̄0, ȳ0) − (x0,y0)‖ < R and each ε > 0 small enough, the corresponding
solution (xε(t, t0, x̄0), yε(t, t0, ȳ0)) of the general system (2.77) verifies

lim
ε→0

(xε(t, t0, x̄0), yε(t, t0, ȳ0)) = (x∗(y∗(t0,y0)), y∗(t, t0,y0))

uniformly on closed subset of [t0,∞).

Proof.– The proof consist in showing that conditions (C1), (C2) and those
required in the statement of the theorem fulfill conditions (I) up to (VII) stated
in the main result of [52].

(I) It holds because of the regularity of functions F, S,G.

(II) Idem.

(III) According to our settings, $(t,x(t,y),y, 0) = F̄(x∗(y),y) and (C1) as-
sures the existence of such an isolated (continuum of) equilibrium.

(IV) We recall that function Ḡ does not depend on ε. We fix η > 0 and consider

‖G(t/ε,x,y)− Ḡ(x∗(y),y)‖.

It is apparent that

‖G(t/ε,x,y)− Ḡ(x∗(y),y)‖

≤ ‖G(t/ε,x,y)− Ḡ(x∗(y),y)‖+ ‖Ḡ(x∗(y),y)− Ḡ(x,y)‖
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On the one hand, the fact that

lim
ξ→∞

G(ξ,x,y) = Ḡ(x,y)

is locally uniform means that there exists ξ0 > 0 such that for all ξ > ξ0 it
follows that

sup ‖G(ξ,x,y)− Ḡ(x,y)‖ < η/2 ∀(x,y) ∈ SR.

Moreover, as t0/ε < t/ε for all t > t0, there exists δ0 > 0 such that
0 < ε < δ0/2 implies t0/ε > ξ0 and, thus,

sup
SR

‖G(t/ε,x,y)− Ḡ(x,y)‖ < η/2 ∀(t,x,y) ∈ I × SR.

On the other hand, function Ḡ is continuous in x and y varies in a compact
set. For each fixed y there exists δ = δ(y) such that ‖x− x∗(y)‖ < δ(y)
implies

‖Ḡ(x∗(y),y)− Ḡ(x,y)‖ < η/2.

In fact, there exists

0 < δ̂ := min {δ(y); ‖y − y0‖ ≤ R}

and choosing δ = min
{
δ0, δ̂

}
yields the result we were looking for.

(V) Similar to (IV).

(VI) This condition is among the hypotheses asked for in the statement of the
theorem.

(VII) The (C1) condition asks for the existence of ∆ > 0 such that

max
{

Re (λ(β)) ; λ(β) ∈ σ
(
JF̄(x∗(β))

)
; ‖β − y0‖ ≤ R

}
≤ −∆ < 0,

where σ
(
JF̄(x∗(β))

)
stands for the spectrum of the linearization of F̄

about the equilibrium x∗(β).

�

Remark 2.3.2 Theorem 2.3.1 is also true if there exist finitely many continuum
of equilibria of the form x∗(β) which are suitably isolated; meaning that if there
exist x∗i (β) such that F(x∗i (β),β) = 0 for i = 1, 2, then

‖x∗1(β)− x∗2(β)‖ > R

for all and β, being R > 0 that from theorem 2.3.1.
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Chapter 2 Continuous dynamical systems.
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In the autonomous case, the concept of uniformly asymptotically stability (see
condition (C2) in theorem 2.3.1) can be easily characterized for constant solutions
(i.e., equilibrium points) as shown in the following proposition.

Proposition 2.3.3 Assume that system (2.78) has an equilibrium point y∗.
Then, y∗ is asymptotically uniformly stable if the real part of the eigenvalues
of the linearization of G about y∗ is strictly negative.

Proof.– It follows easily mutatis mutandis from the proof of proposition 2.2.3.

�

2.3.2 Asymptotically autonomous predator-prey sys-
tem with epidemic disease for predators.

Eco-epidemiology is a research area that studies the interactions between com-
munity and epidemic processes. Despite its youth, it is rapidly becoming a field
of study in its own rights. Anderson and May [3] were the first to consider a
predator-prey model where prey species was infected by some disease. Since
then, many authors have proposed and studied different predator-prey models in
the presence of disease, mainly affecting preys [16], [25], [74] and [50] but also
affecting predators [40], [41] and [102]. Recently, Bairagi and Chattopadhyay
have summarized the state of the art in eco-epidemiology [13]. Among other
questions, in [13] they point out the problem of dealing with (nonautonomous)
periodic eco-epidemiological systems, which, to the best of our knowledge, have
not still been treated. Besides, nonautonomous asymptotically autonomous eco-
epidemic models seem not to be treated either.

We present a generalization of the autonomous model studied in [9]. In that
paper, Auger et al. considered a Lotka-Volterra predator-prey model as a slow
process. This community system was coupled with a SIR epidemic affecting the
predators. Both the mass action and the frequency-dependent transmission law
(see [69] for a survey of pathogen transmission models) were considered and
compared. We deal with the nonautonomous asymptotically autonomous ver-
sion of the aforementioned model when the frequency-dependent transmission
law occurs. We explore the possibility of using an epidemic process for handling
predator population size, that is, we consider asymptotically autonomous coef-
ficients to simulate the effect of human handling of the disease through slight
modifications (in time) of disease parameters. We extend this ”control” to the
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whole model assuming the parameters defining community relations to be asymp-
totically autonomous too.

Next, we set up a nonautonomous version of the eco-epidemic model found
in [9] which, in fact, fits in system (2.76). Then, using the reduction procedure
developed in this section, we are able to recover those results obtained in [9] and
recycle them to explain the behavior of the nonautonomous original system.

Nonautonomous asymptotically autonomous predator-prey system
with disease affecting predators.

As we have already said, we present a prey predator community system in which
predators are affected by an epidemic process. On the one hand, we consider a
classic Lotka-Volterra model with logistic growth in absence of predators

(2.80)


dx

dt
= r(s)x

(
1− x

K(t)

)
+ a(t)xy

dy

dt
= −µ(t)y + b(t)xy

were x and y stand for prey and predator densities, parameters are time depend-
ing functions and have the usual meaning; r and µ stand for corresponding the
growth net rates, K > 0 stands for the carrying capacity, a and b measure the
effect of encounters between preys and predators (respectively, the damage for
preys and the benefit for predators). It is usually assumed that b(t) = e a(t).

On the other hand, the most usual transmission law considered in the liter-
ature is the mass action law. However, several more complex functions relating
disease transmission to the densities of susceptible and infected hosts have also
been proposed [69]: frequency-dependent transmission (known as well as stan-
dard incidence law), power relationship, negative binomial, Holling like, asymp-
totic transmission, and many others. In this case, we consider the asymptotic
transmission law (see [1], [46], [69] [82] for further information in the asymptotic
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transmission law), that is:

(2.81)



ds

dt
= γ(t)r − β(t)

si

s+ i

di

dt
= β(t)

si

s+ i
− δ(t)i

dr

dt
= δ(t)i− γ(t) r

where s, i and r stand for the densities of susceptible, infected and recovered
individuals. The epidemiological parameters γ, β, and δ depend on time and
represent, respectively, the rate at which predators loss immunity, the infection
rate and the recovery rate of infected predators.

Al the coefficients involved in systems (2.80) and (2.81) are supposed to have
limit when s → ∞ which, in the end, will yield an asymptotically autonomous
system. For further purposes, we note

z̄ := lim
s→∞

z(s) ∀ z(s) ∈ {β(s), δ(s), γ(s), µ(s), µ′(s), a(s), b(s), K(s)} .

Finally, we couple (2.80) and (2.81) and separate the time scales; the epidemic
process is considered to be faster when compared with community relations.
This may be the case when transmission rate is very high. For this purpose let
us consider ε, a parameter close to zero. Coupling (2.80) and (2.81) yields the
so-called complete system:

(2.82)



dn

dτ
= ε

[
r(τ)n

(
1− n

K(τ)

)
− a(τ)n(S + I +R)

]
dS

dτ
= γ(τ)R− β(τ)SI

S + I
+ ε [−µ(τ)S + b(τ)nS]

dI

dτ
=
β(τ)SI

S + I
− δ(τ)I + ε [−µ(τ)I − µ′(τ)I + b(τ)nI]

dR

dτ
= δ(τ) I − γ(τ)R + ε [−µ(τ)R + b(τ)nR]

Here, we have noted prey density by n while S, I and R stand for susceptible,
infected and recovered predators, respectively. We point out that we have chosen
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a non lethal disease, but even if the infection is not mortal, it has a negative
effect in the long time life of infected individuals, which is included through µ′

in the slow part of the third equation in(2.82).
Now, we apply the aggregation result stated in this section in order to study

system (2.82) by means of a reduced one. Getting back to (2.82), the corre-
sponding boundary layer problem reads as follows

(2.83)



dS

ds
= γ̄R− β̄ SI

S + I

dI

ds
= β̄

SI

S + I
− δ̄I

dR

ds
= δ̄ I − γ̄ R.

We point out that epidemics described by system (2.83) do not consider births
or deaths. Thus, total predator population p = S + I + R is kept constant in
(2.83). This assumption will be coherent with the consideration that epidemics
evolve much faster than community processes, where demography takes place.
According with lemma 4.1 in [9], which we reproduce for the convenience of the
reader, it follows that

Lemma 2.3.4 System (2.83) may posses two different equilibrium:

• If β̄ > δ̄ the so-called disease-endemic equilibrium,

S∗ =
γ̄δ̄p

γ̄β̄ + (β̄ − δ̄)δ̄ I∗ =
γ̄(β̄ − δ̄)p

γ̄β̄ + (β̄ − δ̄)δ̄ R∗ =
δ̄(β̄ − δ̄)p

γ̄β̄ + (β̄ − δ̄)δ̄

which is asymptotically stable.

• otherwise (that is, if β̄ ≤ δ̄) the non-negative equilibrium is

S∗ = p, I∗ = 0, R∗ = 0

known as free disease equilibrium is also asymptotically stable.

Let us introduce new variables, the global variable p, and the frequencies, defined
as follow

p = S + I +R, S :=
S

p
I :=

I

p
R :=

R

p
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The global variable p stands for the total density of predators, as we have already
said. Writing system (2.82) in terms of these new variables, according with
theorem 2.3.1 the corresponding aggregated system is the following

(2.84)


dn

dt
= r̄n

(
1− n

K̄

)
− ānp,

dp

dt
= −µ̂p+ b̄np,

where

µ̂ =


µ̄ if β̄ < δ̄,

µ̄+ µ̄′I∗ if β̄ > δ̄,

We are ready to proceed with the study of the aggregated problem. The sub
indexes fde and ede will refer to the free disease equilibrium and the endemic
disease equilibrium, respectively.

Theorem 2.3.5 Let us consider (nε(t), Sε(t), Iε(t), Rε(t)), the solution of sys-
tem (2.82) with initial values (nε0, S

ε
0, I

ε
0 , R

ε
0) and assume that K̄ > µ̂/b̄. We

have that,

• If β̄ < δ̄, then there exist δ1 > 0 and ε1 > 0 such that for ε ∈ (0, ε1) it
follows that

lim
ε→0

(nε(t), Sε(t), Iε(t), Rε(t)) =

(
µ̄

b̄
,
r̄

ā

(
1− µ̂

b̄K̄

)
, 0, 0

)
=: Ψfde

uniformly in closed subintervals of I = [t0,∞), provided that

dist ((nε0, S
ε
0, I

ε
0 , R

ε
0),Ψfde) < δ1.

• If β̄ > δ̄ there exist δ2 > 0 and ε2 > 0 such that for ε ∈ (0, ε2) it follows
that

lim
ε→0

(nε(t), Sε(t), Iε(t), Rε(t))

=

(
µ̂

b̄
,
r̄

ā

(
1− µ̂

b̄K̄

)
S∗,

r̄

ā

(
1− µ̂

b̄K̄

)
I∗,

r̄

ā

(
1− µ̂

b̄K̄

)
R∗
)

=: Ψede

uniformly in closed subintervals of I = [t0,∞), provided that

dist ((nε0, S
ε
0, I

ε
0 , R

ε
0),Ψede) < δ2.
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Conclusions and perspectives.

Proof.– Straightforward calculations yield the result.

�

Theorem 2.3.6 Let us consider (nε(t), Sε(t), Iε(t), Rε(t)), the solution of sys-
tem (2.82) with initial values (nε0, S

ε
0, I

ε
0 , R

ε
0). If K̄ < µ̂/b̄ then there exist δ > 0

and ε0 > 0 such that for ε ∈ (0, ε0) it follows that

lim
ε→0

(nε(t), Sε(t), Iε(t), Rε(t)) = (K̄, 0, 0, 0)

uniformly in closed subintervals of I = [t0,∞), provided that

dist
(
(nε0, S

ε
0, I

ε
0 , R

ε
0), (K̄, 0, 0, 0)

)
< δ.

Proof.– Straightforward calculations yield the result.

�

Conclusions.

Our results show not only that predator population size is larger in the free disease
state than in the endemic scenario, but also that prey population is larger in the
endemic scenario than in the free disease.

In addition, the corresponding sizes depend on these parameters governing
epidemics. Then, epidemics seems to be a suitable mechanism for controlling
prey and predator populations size.

2.4 Conclusions and perspectives.

The departure point of this chapter are the approximate aggregation techniques
described by Auger et al. (see [6] and references therein) concerning two time
scales systems of the form

(2.85)
dn

dτ
= f(n) + ε s(n),

admitting a change of variables n 7→ (x,y) such that system (2.85) becomes

(2.86)


ε
dx

dt
= F(x,y) + εS(x,y),

dy

dt
= G(x,y),
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where t = ετ . Functions f and F stand for the fast dynamics while functions s
and S and G concern the slow process. In this chapter we develop a methodol-
ogy for the approximate aggregation of nonautonomous two time scales systems
similar to (2.85).

Our results are based on a theorem due to F.C. Hoppensteadt [52] concerning
singular perturbations on the infinite interval. We notice that functions involved
in the equations studied by Hoppensteadt are of class C2 while those involved in
the equations of the autonomous aggregation result presented in section 2.1.1
are of class C1 on its respective domains. However, this is not a real restriction
in usual applications, where these functions can be chosen as regular as needed.

Hoppensteadt theorem states conditions allowing the study of certain dynam-
ical properties of nonautonomous two time scale systems analyzing two related
and simpler systems; the boundary layer problem and the aggregated system,
both systems being less dimensional than the original system. Using this the-
orem, the existence of solutions for the aggregated system and boundary layer
problem (stable in the sense of sense (2.12) and (2.11), resp) allows one to
describe a curve uniformly attracting the solutions of the complete system on
closed subintervals of [t0,∞).

Hoppensteadt theorem is a general one but, as a counterpart, it holds under
seven restrictive and complicated to be checked hypotheses. Five of them are
regularity conditions concerning those functions involved in the system and the
other two conditions are stability requirements for the solutions of the boundary
layer problem and the aggregated system. Roughly, our results point out that
when considering periodic (section 2.2) or asymptotically autonomous systems
(section 2.3), all these conditions can be replaced by much simpler ones which
enhances the applicability of this classic theorem.

In section 2.2 we consider systems of the form

(2.87)
dn

dτ
= f(ετ,n) + ε s(ετ,n),

where functions f and s are periodic function of τ . We assume the existence of
a change of variables n 7→ (x,y) such that system (2.87) becomes

(2.88)


ε
dx

dt
= F(t,x,y) + εS(t,x,y),

dy

dt
= G(t,x,y),
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where t = ετ and functions F, S and G are periodic function of time t with
the same period. We show that precisely being a periodic system allows to
simplify those hypothesis in the Hoppensteadt theorem. In theorem 2.2.1 we
show that the regularity conditions imposed in the Hoppensteadt theorem on
the function involved in the system automatically hold for periodic systems. In
addition, in proposition 2.2.3 we show that, when dealing with periodic systems,
the Hoppensteadt stability condition on the periodic solution of the reduced
system can be established using Floquet theory, that is, through a linearized
system. We use these results to analyze two different two time scales population
models.

In a first application we analyze a two patches periodic Lotka-Volterra predator-
prey type model with a refuge for prey. We include predator interference, which
has been proven to be relevant when fitting models to real data. Considering
prey displacements between the refuge and the interacting regions to be faster
than local predator-prey interactions allows us to study the three dimensional
system by means of a two dimensional one. We obtain different conditions (in
terms of the coefficients of the model) for the existence and the stability of
the semi-trivial solution (predator population become extinct) or the non trivial
positive solution (predator-prey coexistence) in terms of certain ”vital” parame-
ters derived from the study of the aggregated model, which is a sort of carrying
capacity for coexistence of the spatially distributed system.

In a second application we consider a spatially distributed periodic multi strain
SIS epidemic model. We allow epidemic heterogeneity considering a patchy envi-
ronment (with an arbitrary number of patches) where epidemic parameters could
take different values at each patch. We let susceptible and infected individuals
to move around patches with periodic displacement rates. Considering that in-
dividual movements are much faster than epidemic processes, we build up a two
dimensional (thus, aggregated) system describing the asymptotic behavior of the
original model. In this way, we are able to define coherent reproduction numbers
and invasion reproduction numbers of the spatially distributed nonautonomous
model through the aggregated system. Comparing these reproduction numbers
with their non spatially distributed counterparts we show that adequate periodic
fast migration rates entail persistence or eradication of epidemic strains in regions
where, in absence of migrations, the contrary is expected.

In section 2.3 we address another kind of two time scales nonautonomous
systems. Therein we deal with systems of the form

(2.89)
dn

dτ
= f(τ,n) + ε s(τ,n),
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such that the aforementioned change of variables n 7→ (x,y) exists and where
functions f and s are asymptotically autonomous on τ . Now the asymptotically
autonomous feature of the system allow us to drastically simplify those conditions
for the Hoppensteadt theorem to hold, as shown in theorem 2.3.1. In addition,
in proposition 2.3.3 we proof that the Hoppensteadt stability conditions on the
solution of the aggregated system reduces to checking the sign of the real part
of the eigenvalues of an appropriate linear system. The reduction procedure is
illustrated by means of an application to an eco-epidemiologic model.

We consider a Lotka-Volterra predator-prey model as a slow process. This
community system is coupled with a SIR epidemic model following the frequency-
dependent transmission law affecting predators. Both processes are modeled
by means of asymptotically autonomous functions thus, extending the results
achieved in [9] for the autonomous counterpart of this model. We show that
predator population size is larger in the free disease state than in the endemic
scenario while prey population size is smaller when there is no epidemics. In
case of endemic epidemics, both predator and prey population size depend on
the epidemic parameter values. Thus, epidemics are a suitable mechanism for
controlling populations size.

We point out that combining theorems 2.2.1 and 2.3.1 allow us to study two
time scales models combining periodic and asymptotically autonomous features,
which will permit analyzing more realistic and general models.

Regarding perspectives, because of the nature of the Hoppensteadt theorem,
those results related with invariant regions or unstable solutions found for the
aggregated system can not be read in terms of the general system (using the
Hoppensteadt theorem). In this sense, it is of interest searching for alternative
mathematical tools complementing those developed herein.
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