Tablas de contingencia y contrastes χ^2

Independencia

Grado de Biología sanitaria

M. Marvá

e-mail: marcos.marva@uah.es

Unidad docente de Matemáticas, Universidad de Alcalá

Contraste de independencia: el problema

Analizaremos la (posible) relación entre dos variables cualitativas

 $F \sim F$

Terminología habitual

- Una variable cualitativa se suele llamar factor
- Las modalidades de cada factor se llaman niveles del factor

Ejemplos:

 Factor: Nivel de actividad, niveles: muy bajo, bajo, normal, alto, muy alto

2 Factor: Creencia religiosa niveles: creyente, no creyente niveles (alternativo): cristiano, musulmán, budista, hinduista

Sección 12.1 del libro

Contraste de independencia: el problema

- Cada individuos puede clasificarse de acuerdo a los dos factores.
- La tabla de contingencia resume la (doble) clasificación.

Ejemplo: En el mes de enero de 2013 el *Barómetro* del CIS recoge las respuestas de n = 2452 personas sobre sus creencias religiosas

	Hombres	Mujeres
Creyentes	849	1015
No creyentes	356	232

Resultados del CIS de Enero de 2013 discriminados por género aquí*

¿Hay más creyentes entre los hombre, o entres las mujeres?

En otras palabras

¿Son independientes los factores "género" y "ser creyente"?

Hemos eliminado 19 mujeres y 12 hombres que decidieron no contestar

Hipótesis

*H*₀ : {La religiosidad es independiente del género}

*H*₁ : {La religiosidad dependen del género}

Ojo: si p_m y p_h son las proporciones de mujeres y hombres creyentes, podríamos contrastar

$$H_0: p_m = p_h$$
 $H_1: p_m \neq p_h$

como una diferencia de proporciones (para tablas 2×2 es equivalente) **pero** no funciona si uno de factores tiene más de dos niveles.

Estrategia: comparar

- Lo que hemos observado en realidad
- Lo que esperamos observar si H₀ fuera cierta

las **diferencias** ¿son **significativas**? necesitaremos un estadístico y su distribución de probabilidad

Valores observados es la tabla obtenida del CIS y valores marginales

	Hombres	Mujeres	Total
Creyentes	$o_{11} = 849$	$o_{12} = 1015$	1864
No creyentes	$o_{21} = 356$	$o_{22} = 232$	588
Total	1205	1247	2452

Usamos

Oij

para el número de observaciones

- del nivel i del primer factor y
- el nivel j del segundo factor

Valores esperados si H₀ cierta: idem proporción de creyentes por géneros

• Estimar la proporción creyentes sin considerar el género

$$\frac{total\ creyentes}{total\ individuos} = \frac{1864}{2452} = \hat{p} \approx 0.7602$$

- Proporción NO creyentes $\hat{q} = 1 \hat{p}$
- Valores esperados:

$$e_{11} = \text{total hombres} \cdot \hat{p} = 1205 \cdot \hat{p} \approx 916.04$$

$$e_{12} = \text{total mujeres} \cdot \hat{p} = 1247 \cdot \hat{p} \approx 948.96$$

se obtiene la tabla de valores esperados

	Hombres	Mujeres	Total
Creyentes	$e_{11} = 916.04$	$e_{12} = 948.96$	1864
No creyentes	$e_{21} = 288.96$	$e_{22} = 299.04$	588
Total	1205	1247	2452

Test de independencia Estadístico χ^2 para una tabla de contingencia 2×2

Dada una tabla de contingencia 2×2 , con valores esperados e_{ij} y valores observados o_{ij} (para i, j = 1, 2), definimos el estadístico:

$$\Xi = \frac{(o_{11} - e_{11})^2}{e_{11}} + \frac{(o_{12} - e_{12})^2}{e_{12}} + \frac{(o_{21} - e_{21})^2}{e_{21}} + \frac{(o_{22} - e_{22})^2}{e_{22}}$$

Entonces, si n > 30 y $e_{ij} \ge 5$ para i, j = 1, 2, se tiene que

$$\Xi \sim \chi_1^2$$

El p-valor del contrate es $P(\chi_1^2 > \Xi)$.

Simetría: da lo mismo considerar $F_1 \sim F_2$ que $F_2 \sim F_1$

Ejemplo: en el caso que nos ocupa

$$\begin{split} \Xi &= \frac{(o_{11} - e_{11})^2}{e_{11}} + \frac{(o_{12} - e_{12})^2}{e_{12}} + \frac{(o_{21} - e_{21})^2}{e_{21}} + \frac{(o_{22} - e_{22})^2}{e_{22}} = \\ &= \frac{(849 - 916.04)^2}{916.04} + \frac{(1015 - 948.96)^2}{948.96} + \frac{(356 - 289.96)^2}{289.96} + \frac{(232 - 299.04)^2}{299.04} \approx 40.23 \end{split}$$

Como $P(\chi_1^2 > 40.23) = 2.26 \cdot 10^{-10}$ rechazar H_0

Tablas de contingencia $n_1 \times n_2$

Caso general Contrastar la (posible) relación $F_1 \sim F_2$ donde

- el factor F_1 tiene n_1 niveles
- el factor F_2 tiene n_2 niveles

Considerar todas las combinaciones posibles de los niveles de F_1 y F_2 da una tabla de contingencia $n_1 \times n_2$, con n_1 filas y n_2 columnas:

		Variable F ₂		
		<i>b</i> ₁		b_{n_2}
Variable <i>F</i> ₁	a ₁	011		0 _{1 n₂}
	:		٠.	
	a_{n_1}	O _{n11}		$O_{n_1 n_2}$

Sección 12.1.2 del libro

Tablas de contingencia $n_1 \times n_2$

Para obtener los valores esperados se calculan los valores marginales

		Variable F ₂			
		<i>b</i> ₁		b_{n_2}	Total
Variable F_1	a ₁	011		O _{1 n₂}	O ₁₊
	:				•
	a_{n_1}	O _{n11}	• • •	$O_{n_1 n_2}$	o_{n_1+}
	Total	O _{+ 1}		$O_{+} n_{2}$	o ₊₊ =n

• Calcular las proporciones observadas con independencia del factor F2

$$\hat{p}_i = \frac{\text{total individuos nivel } a_i}{\text{total individuos}} = \frac{o_{i+}}{n}$$

Calcular la frecuencia esperada para cada par de niveles de F₁ y F₂

$$e_{ij} = \hat{p}_i \cdot \text{total individuos nivel } b_j = \hat{p}_i \cdot o_{+j}$$

Tablas de contingencia $n_1 \times n_2$

Test de independencia Estadístico χ^2 para una tabla de contingencia $n_{\rm 1} \times n_{\rm 2}$

Dada una tabla de contingencia $n_1 \times n_2$, con valores observados o_{ij} , y valores esperados e_{ii} , definimos el estadístico:

$$\Xi = \sum_{i=1}^{n_1} \sum_{j=1}^{n_2} \frac{(o_{ij} - e_{ij})^2}{e_{ij}} = \sum_{\text{tabla}} \frac{(\text{observado} - \text{esperado})^2}{\text{esperado}}$$

Es decir, sumamos un término para cada casilla de la tabla. Entonces, mientras sea n > 30 y ninguno de los valores e_{ij} sea menor de 5, el estadístico Ξ sigue una distribución χ_k^2 , con

$$k = (n_1 - 1)(n_2 - 1)$$

grados de libertad. El p-valor del contraste

 H_0 : {El factor F_1 es independiente del factor F_2 }

es
$$P\left(\chi^2_{(n_1-1)(n_2-1)} > \Xi\right)$$